

RSGAN: RECURRENT STACKED GENERATIVE ADVERSARIAL NETWORK FOR CONDITIONAL VIDEO GENERATION

INTRODUCTION

Generating video frames based on a pre-condition is a challenging problem and requires understanding of per frame contents and visual dynamics and their relevacies to the pre-condition. In this project, we propose a novel Recurrent Stacked Generative Adversarial Network (RSGAN) based model to generate video frames based on a given pre-condition. In our knowledge, this is the first work to address the problem of conditional video generation using adversarial network. We can address the problem of generating videos based on pre-conditions such as,

- 1. action classes
- 2. fMRI signals
- 3. sentence descriptions

OUR APPROACH

- connected by a Fully Convolutional LSTM Network.

S. NAHA, K. M. NAYEM AND M. L. ISLAM SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY

OBJECTIVE FUNCTION

Conditioned on Gaussian latent variables c_0 , Stage-I RSGAN trains discriminator D_0 and generator G_0 by alternatively maximizing \mathcal{L}_{D_0} and minimizing \mathcal{L}_{G_0} . **Stage-I RSGAN:**

 $\mathcal{L}_{D_{o}} = \mathbb{E}_{(I_{o},t)\sim p_{data}}[log D_{0}(I_{0},\varphi_{t})] + \mathbb{E}_{z\sim p_{z},t\sim p_{data}}[log(1-D_{0}(G_{0}(z,c_{0}),\varphi_{t}))]$ $\mathcal{L}_{G_0} = \mathbb{E}_{z \sim p_z, t \sim p_{data}} [log(1 - D_0(G_0(z, c_0), \varphi_t))] + \lambda D_{KL}(\mathcal{N}(\mu_0(\varphi_t), \sum_0(\varphi_t)) || \mathcal{N}(0, I))$

Conditioned on the low resulation sample s_0 and Gaussian latent variables c, discriminator D and generator G in Stage-II RSGAN is trained by alternatively maximizing \mathcal{L}_D and minimizing \mathcal{L}_G . **Stage-II RSGAN:**

 $\mathcal{L}_{D} = \mathbb{E}_{(I,t) \sim p_{data}} [log D(I,\varphi_{t})] + \mathbb{E}_{s_{o} \sim pG_{o},t \sim p_{data}} [log(1 - D(G(s_{o},c),\varphi_{t}))]$ $\mathcal{L}_{G} = \mathbb{E}_{s_{o} \sim pG_{o},t \sim p_{data}} [log(1 - D(G(s_{o},c),\varphi_{t}))] + \lambda D_{KL}(\mathcal{N}(\mu(\varphi_{t}),\sum(\varphi_{t}))||\mathcal{N}(0,I))$

RESULT

Ground truth (1st row) and the **partial result on Convolutional**

<u>(</u>			ур П				ų. Į	₽ Į
	V	Videc	actio	on: D	Prink	wate	r	
L.	-(⊖lar	ج- م م		4 <u>1</u> se	-6-5ee	tis.

Video action: Drop										
(). } }			4		a star	5	- ورياية. ويطعنهم			
		ý Ť,	÷.		\$	h h				

Video action: Point finger at the other person

• Right now, we are trying to generate video with simple details. That's why we are using NTU RGB+D Action Recognition Dataset (skeletal data).

FUTURE RESEARCH

• Generate video with complex details and multiple moving objects. • Use fMRI dataset of human brain, to generate video.

REFERENCES

[1] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. *arXiv preprint arXiv:1612.03242*, 2016.

[2] S. Valipour, M. Siam, M. Jagersand, and N. Ray. Recurrent Fully Convolutional Networks for Video Segmentation. *arXiv preprint arXiv:1611.09904*, 2016.

[3] O. Mogren. C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv preprint arXiv:1611.09904, 2016.

LSTM	(2^{nd})	row).	
		1	

φ	ம்	ά	ф	¢	ф.	\Box
Ú.	Û,	ή	Λ.	<u>Å</u>	ŕ.	A
		Ι.		1		
	(1)	(3	8	13	<i>t</i> 10	
	Å.	ń.	<u>A</u>	A	Ė.	Δ

Video action: Reading

	F	T			
	() V	¢ ()	ţ.	

Video action: Slapping other person

1	À>>	à II	À	ý, tek	لأحدد	Å
		4) 				

Video action: Writing