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Introduction
Monaural speech enhancement is a challenging
problem that aims to remove unwanted noise
from a target speech signal.

Speech Enhancement (SE) systems target
maximization of speech quality and intelligibility
measured by various proposed objective
functions.

Current speech quality objective functions are
often not strongly correlated with human
subjective evaluations.

Image source, https://clipground.com/
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Speech Objective Functions
Short-Time Spectral-Amplitude Mean square error (STSA-MSE) (Ephraim et al. 1984)

Short-time objective intelligibility (STOI) [1]

Fu et al. 2018 jointly optimize with STOI and MSE, which improves speech intelligibility.
Zhang et al. 2018 apply gradient approximation and Koizumi et al. 2018 use a policy gradient method.
Kolbæk et al. 2019 compares MSE and STOI as loss function.

Perceptual evaluation of speech quality (PESQ) [2]

Fu et al. 2018 report that PESQ does not been increase when optimizing with STOI.
Martin-Donas et al. 2018 propose a PESQ-inspired objective function.
Fu et al. 2018 formulate Quality-Net for non-intrusive PESQ estimation, which is used to enhance speech
as a maximization criteria in Fu et al. 2019 and as a model selection parameter in Zezario et al. 2019.

Signal-to-distortion ratio (SDR) [3]

Kawanaka et al. 2010 perform SDR as objective cost function.
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Motivation
Rix et al. 2006 & Emiya et al. 2011 show that optimizing with objective measures of success is not always
optimal since they do not always strongly correlate with subjective measures.

Subjective evaluation – Mean opinion score (MOS)
Patton et al. 2016, Avila et al. & Lo et al. 2019 et al. proposed human-assessed MOS model separately.
Dong et al. 2020 formulate another MOS estimate model in real-world environments.

Joint learning
Speech estimation with other training targets are successful, e.g. Donahue et al. 2018 (speech
recognition ), Lee et al. 2019 (phase response), Schulze-Forster et al. 2020 (phoneme class), and Ji et al.
2020 (speaker identification).

In a similar manner, joint learning of speech enhancement task and speech-quality estimation can provide
better speech quality acoustically and perceptually.
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Proposed approach
We propose a joint learning scheme that estimates a speech quality MOS score and enhances the speech
signal.

MOS estimation model produces encoded embedding vectors that extract perceptually useful features that
are important for human-based assessment.

Proposed speech enhancement model is conditioned on that embedding vector and enhances the noisy
speech using a separate encoder- decoder framework.

Our proposed model jointly updates both the MOS-prediction and speech-enhancement models during
training, using speech enhancement and MOS prediction loss terms.
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Problem Formulation
In the time domain, 𝑚" = 𝑠" + 𝑛"

In the time-frequency (T-F) domain, 𝐌 = 𝑴 𝑒*𝜽,

Estimate clean speech, |.𝑺| = ℱ 𝑴 with noisy phase 𝜽1.

𝑵 = |𝑵|𝑒*𝜽3

𝑵 → noise magnitude
𝜽5 → noise phase

𝑺 = |𝑺|𝑒*𝜽6

𝑺 → clean speech magnitude
𝜽7 → clean speech phase

𝑚" → noisy speech
𝑠" → clean speech
𝑛" → noise
𝑡 → time index

𝑴 → T-F noisy speech
𝑴 → magnitude response
𝜽1 → phase response
𝑓 → frequency index
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Speech Quality Assessment Model
We adopt a data-driven MOS prediction model 
proposed by Dong et al. 2020.

MOS prediction model consists of an attention-based 
encoder-decoder structure that uses stacked 
pyramid bi-directional long-short term memory 
(pBLSTM) networks in the encoder. We denote this 
model as Pyramid-MOS (PMOS). 

The output of a pBLSTM node is an embedding 
vector, ℎ"; , that is as defined below: 

ℎ"; = 𝑝𝐵𝐿𝑆𝑇𝑀 ℎ"BC; , ℎE×"BEGC;BC , ℎE×";BC

where Υ is the reduction factor between successive 
pBLSTM layers and 𝑙 is the layer number. 

Fig. Proposed network for speech quality assessment 
(PMOS model).
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Speech Quality Assessment Model
The encoder output is generated by concatenating 
the hidden states of the last pBLSTM layer into 
vector 𝑯 = 𝒉C, 𝒉L,⋯ , 𝒉N,⋯ , 𝒉℘ , where ℘ is the total 
number of final embedding vectors with index 𝜏.

The decoder of the PMOS model is implemented as 
an attention layer followed by a fully-connected (FC) 
layer and outputs estimated MOS of input speech. 

Self-attention mechanism uses pyramid encoder 
output at the i-th and k-th time steps to compute 
attention weights, 𝛼*,RS1T7 and context vector 𝑐*S1T7,

𝛼*,RS1T7 =
𝑒𝑥𝑝 𝒉*

W𝑸𝒉R
∑*ZC
℘ 𝑒𝑥𝑝 𝒉*

W𝑸𝒉R
𝑐*S1T7 = [

RZC

℘
𝛼*,RS1T7 ⋅ 𝒉R

where 𝑸 is the PMOS attention weight matrix.

Fig. Proposed network for speech quality assessment 
(PMOS model).
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Attention-based SE Model 
Proposed SE model is also an encoder-decoder 
structure. SE encoder takes a single time-frame of a 
noisy-speech mixture, 𝑴" , as input and multiple 
BLSTM layers, are stacked together to create a 
hidden representation of the frame, 𝒈". 

An attention mechanism is applied using the mixture 
encoding from the SE model, 𝑮 = 𝒈C, 𝒈L,⋯ , 𝒈_ , and 
the PMOS encoding, 𝑯, from the MOS prediction 
model. 

We compute a score for each embedding vector 𝒉N;
using a learnable weight matrix, 𝑾.

𝑠𝑐𝑜𝑟𝑒",N = 𝒈"_𝑾𝒉N

Fig. Proposed network for speech enhancement 
(SE model).
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Attention-based SE Model 
Attention weights for SE model 𝛼",N forms a context 
vector 𝒄" for each mixture frame. Prior computing 𝒄" , 
𝒉Nd passes through a linear layer 𝑙 using below 
equations:

𝛼",N =
𝑒𝑥𝑝 𝑠𝑐𝑜𝑟𝑒",N

∑"ZC_ 𝑒𝑥𝑝 𝑒𝑥𝑝 𝑠𝑐𝑜𝑟𝑒",N
𝒄" = [

NZC

℘
𝛼",e ⋅ 𝑙(𝒉N)

Context vector and SE-model embedding vector are 
concatenated (e.g., [𝒄", 𝒈"]) and passed to the 
decoder module. 

Decoder consists of a linear layer with a tanh(⋅)
activation function, two BLSTM layers, and a linear 
layer with ReLU. It outputs the estimated enhanced 
speech |.𝑺|.

Fig. Proposed network for speech enhancement 
(SE model).
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Joint-learning SE Model 
Our joint-learning objective function uses a weighted 
average of a signal-approximation loss ℒop (from the 
SE model), the MSE of the magnitude spectrum ℒqor
(from the SE model) and the MSE of the MOS 
estimation ℒqso (from the PMOS model). 

With hyper-parameters 𝜆C and 𝜆L, the overall loss 
function: 

ℒ = 𝜆C 𝜆Lℒqor + 1 − 𝜆L ℒop + 1 − 𝜆C ℒqso

We first train the PMOS model using ℒqso (e.g. 𝜆C =
0), then we train the SE model using 𝜆C = 1 , while 
running the PMOS model in inference mode.

Finally, we train both models jointly using ℒ to further 
reduce any correctional differences between the true 
MOS and estimated MOS in the PMOS model, and to 
increase perceptual quality of the enhanced speech. 

Fig. Proposed network for speech enhancement 
& speech quality assessment (SE+PMOS 

model).
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Dataset
Train and evaluate using COnversational Speech In Noisy Environments (COSINE)[4] and Voices Obscured in 
Complex Environmental Settings (VOiCES)[5] speech corpora.

COSINE contains 150 hours audio, which captured using 7-channel wearable microphones, with 
multiparty conversations in a variety of noisy environments (e.g., street, cafeteria, bus, wind noise, etc). 
The approximated SNRs range from -10.1 to 11.4 dB.

VOiCES records audio with 12 microphones placed in two rooms with different background noises to 
capture reverberant-noisy speech. The approximated speech-to-reverberation ratios (SRRs) ranges from 
-4.9 to 4.3 dB.

MOS data was captured from the listening study that is outlined by Dong et al. 2020, which contains MOS 
quality ratings for 18,000 COSINE signals and 18,000 VOiCES signals. 

Noisy or reverberant stimuli of each dataset are divided into training (70%), validation (10%), and testing 
(20%) sets, and trained separately. 
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Experimental Setup
PMOS model

PMOS encoder uses 𝐿 = 3 pBLSTM layers (with 128,
64 and 32 nodes in each direction, respectively) on
top of a BLSTM layer that has 256 nodes.

The reduction factor Υ = 2 is adopted here.
Therefore, the final latent representation ℎN is
reduced in the time resolution by a factor of Υz = 8.

The context vector is passed to a FC layer with 32
units.

SE model

SE model uses a BLSTM based encoder-decoder
architecture, where the encoder consists of 2
BLSTM layers.

Each BLSTM layer contains 200 nodes and the
linear layer has 321 nodes.

Input feature vector is the magnitude of the mixture
spectrogram computed using a hamming window
with 50% overlap after normalization
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Results

MAE RMSE PCC SRCC

NISQA[6] 0.62 0.7 0.71 0.79

PMOS [7] 0.51 0.57 0.88 0.88

SE+PMOS 
(proposed) 0.45 0.52 0.9 0.91

Table 1: Performance comparison with MOS prediction models.

[6] G. Mittag et. al, “Non-intrusive speech quality assessment for super-wideband speech communication networks,” in Proc. ICASSP, 2019.
[7] X. Dong et. al, “A Pyramid Recurrent Network for Predicting Crowdsourced Speech-Quality Ratings of Real-World Signals,” in Proc. Interspeech, 2020.

MAE = Mean absolute error,

RMSE = Root mean squared error,

PCC = Pearson’s correlation coefficient, 

SRCC = Spearman’s rank correlation 
coefficient 
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Results

COSINE VOiCES
Loss function PESQ SI-SDR ESTOI MOS-LQO PESQ SI-SDR ESTOI MOS-LQO

Mixture - 1.46 0.53 0.62 4.04 1.26 -1.3 0.48 2.74

SE mse 2.68 2.8 0.8 3.2 2.3 1.2 0.69 3.5

mos 2.8 3.8 0.82 4.2 2.37 1.66 0.74 5.3

mse, sa 2.72 3.1 0.82 4 2.35 1.6 0.7 3.8

sa, mos 2.89 4.1 0.85 4.4 2.42 1.72 0.77 5.7

sdr 2.7 4.5 0.82 4 2.32 2.01 0.72 4.5

SE+PMOS
(proposed)

mse 3.1 4 0.85 4.2 2.48 1.8 0.8 6

mse, sa 3.19 4.6 0.93 4.8 2.54 2.08 0.86 6.3

mse, sa, mos 3.19 4.5 0.92 5.1 2.53 2.06 0.84 6.5

MetricGAN[8] pesq 3.28 4.4 0.9 5 2.67 2.01 0.83 6.1

stoi 3.19 4.3 0.94 4.8 2.5 2 0.87 5.8

SSEMS[9] qnet (ɸ=0dB) 2.85 2.9 0.83 3 2.4 1.8 0.7 2.8

Table 2: Average results of the SE models in different performance metrics.

[8] S.-W. Fu et. al, “Metricgan: Generative adversarial networks based black-box metric scores optimization for speech enhancement,” in Proc. ICML, 2019.
[9] R. E. Zezario et. al, “Specialized speech enhancement model selection based on learned non-intrusive quality assessment metric.” in Proc. Interspeech, 2019.
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Results
Figure 1: Average (a) SI-SDR, (b) ESTOI performance of SE models on test 
speech in different SNRs.

[3]

[3]

[4]

(proposed)
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Conclusion
Our proposed speech enhancement model utilizes a speech quality MOS assessment metric
in a joint learning manner.

Results show that proposed SE+PMOS model outperforms other models in different noisy
environments.

We evaluate our model’s subjective score using an MOS- estimation model.

Our assessment model provides utterance-level feedback, which may be sub-optimal since
the model’s embeddings are calculated at the frame level.
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