# Incorporating Embedding Vectors from a Human Mean-Opinion Score Prediction Model for Monaural Speech Enhancement

Khandokar Md. Nayem and Donald S. Williamson

Department of Computer Science, Indiana University, IN, USA

**LUDDY** SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

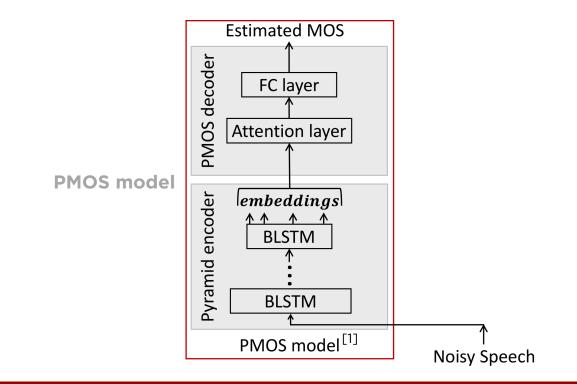
**INTERSPEECH 2021** 

## **Motivation**

Speech Enhancement (SE) systems target maximization of speech quality and intelligibility measured by various proposed **objective functions**.



Current speech quality objective functions are often not strongly correlated with **human subjective evaluations**.

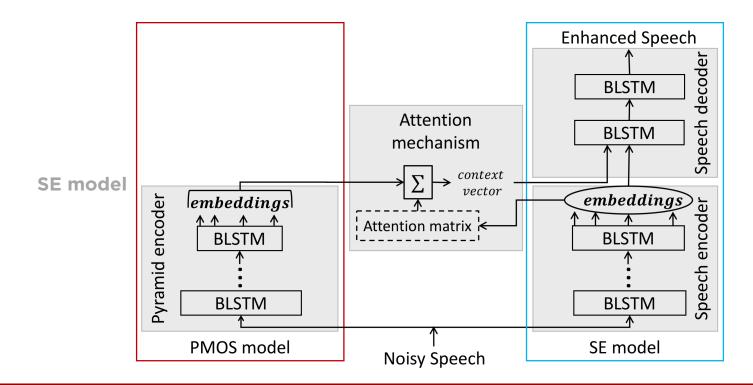



Automatic speech assessment that measures the subjective score of enhanced speech can help SE systems to estimate better perceptual quality speech.



Incorporating Embedding Vectors from a Human Mean-Opinion Score Prediction Model for Monaural Speech Enhancement - K.M. Nayem & D.S. Williamson

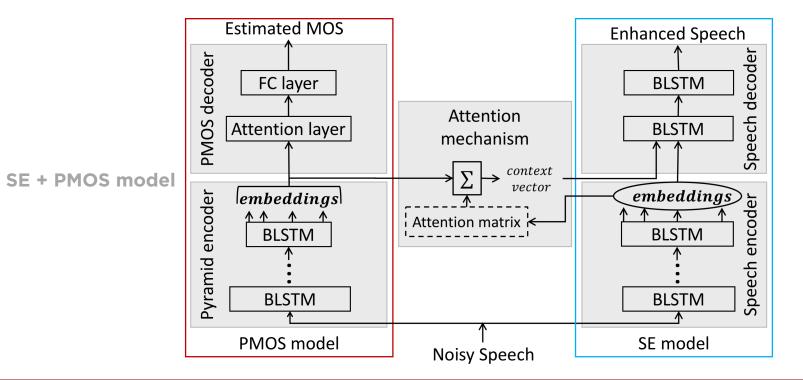
## **Speech Quality Assessment Model**




[1] X. Dong et. al, "A Pyramid Recurrent Network for Predicting Crowdsourced Speech-Quality Ratings of Real-World Signals," in Proc. Interspeech, 2020.



Incorporating Embedding Vectors from a Human Mean-Opinion Score Prediction Model for Monaural Speech Enhancement


#### **Attention-based SE Model**





Incorporating Embedding Vectors from a Human Mean-Opinion Score Prediction Model for Monaural Speech Enhancement

## **Joint-learning SE Model**





Incorporating Embedding Vectors from a Human Mean-Opinion Score Prediction Model for Monaural Speech Enhancement

### **Results**

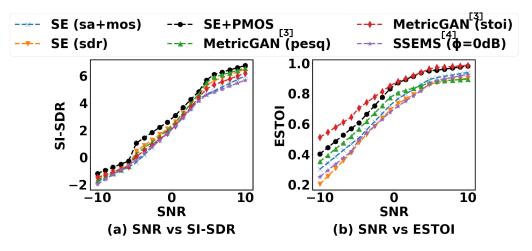
Table 1: Performance comparison with MOS prediction models.

|                       | MAE  | RMSE | PCC  | SRCC |  |
|-----------------------|------|------|------|------|--|
| NISQA <sup>[2]</sup>  | 0.62 | 0.7  | 0.71 | 0.79 |  |
| PMOS <sup>[1]</sup>   | 0.51 | 0.57 | 0.88 | 0.88 |  |
| SE+PMOS<br>(proposed) | 0.45 | 0.52 | 0.9  | 0.91 |  |

PCC = Pearson's correlation coefficient,

SRCC = Spearman's rank correlation coefficient,

SI-SDR = Scale-invariant signal-to-distortion ratio,


ESTOI = extended short-time objective intelligibility,

X. Dong et. al, "A Pyramid Recurrent Network for Predicting Crowdsourced Speech-Quality Ratings of Real-World Signals," in Proc. Interspeech, 2020.
G. Mittag et. al, "Non-intrusive speech quality assessment for super-wideband speech communication networks," in Proc. ICASSP, 2019.
S.-W. Fu et. al, "Metricgan: Generative adversarial networks based black-box metric scores optimization for speech enhancement," in Proc. ICML, 2019.
R. E. Zezario et. al, "Specialized speech enhancement model selection based on learned non-intrusive quality assessment metric." in Proc. Interspeech, 2019.



Incorporating Embedding Vectors from a Human Mean-Opinion Score Prediction Model for Monaural Speech Enhancement - K.M. Nayem & D.S. Williamson

Figure 1: Average (a) SI-SDR, (b) ESTOI performance of SE models on test speech in different SNRs.



#### **Results**

#### Table 2: Average results of the SE models in different performance metrics.

|                          |               | COSINE |        |       |         | VOICES |        |       |         |  |
|--------------------------|---------------|--------|--------|-------|---------|--------|--------|-------|---------|--|
|                          | Loss function | PESQ   | SI-SDR | ESTOI | MOS-LQO | PESQ   | SI-SDR | ESTOI | MOS-LQO |  |
| Mixture                  | -             | 1.46   | 0.53   | 0.62  | 4.04    | 1.26   | -1.3   | 0.48  | 2.74    |  |
| SE                       | mse           | 2.68   | 2.8    | 0.8   | 3.2     | 2.3    | 1.2    | 0.69  | 3.5     |  |
|                          | mos           | 2.8    | 3.8    | 0.82  | 4.2     | 2.37   | 1.66   | 0.74  | 5.3     |  |
|                          | mse, sa       | 2.72   | 3.1    | 0.82  | 4       | 2.35   | 1.6    | 0.7   | 3.8     |  |
|                          | sa, mos       | 2.89   | 4.1    | 0.85  | 4.4     | 2.42   | 1.72   | 0.77  | 5.7     |  |
|                          | sdr           | 2.7    | 4.5    | 0.82  | 4       | 2.32   | 2.01   | 0.72  | 4.5     |  |
| SE+PMOS<br>(proposed)    | mse           | 3.1    | 4      | 0.85  | 4.2     | 2.48   | 1.8    | 0.8   | 6       |  |
|                          | mse, sa       | 3.19   | 4.6    | 0.93  | 4.8     | 2.54   | 2.08   | 0.86  | 6.3     |  |
|                          | mse, sa, mos  | 3.19   | 4.5    | 0.92  | 5.1     | 2.53   | 2.06   | 0.84  | 6.5     |  |
| MetricGAN <sup>[3]</sup> | pesq          | 3.28   | 4.4    | 0.9   | 5       | 2.67   | 2.01   | 0.83  | 6.1     |  |
|                          | stoi          | 3.19   | 4.3    | 0.94  | 4.8     | 2.5    | 2      | 0.87  | 5.8     |  |
| SSEMS <sup>[4]</sup>     | qnet (∳=0dB)  | 2.85   | 2.9    | 0.83  | 3       | 2.4    | 1.8    | 0.7   | 2.8     |  |



Incorporating Embedding Vectors from a Human Mean-Opinion Score Prediction Model for Monaural Speech Enhancement

## Conclusion

Our proposed **speech enhancement** model utilizes a speech quality **MOS assessment metric** in a joint learning manner.

Results show that proposed **SE+PMOS** model outperforms other models in different noisy environments.

We evaluate our model's subjective score using an MOS- estimation model.

Our assessment model provides **utterance-level feedback**, which may be sub-optimal since the model's embeddings are calculated at the frame level.



Incorporating Embedding Vectors from a Human Mean-Opinion Score Prediction Model for Monaural Speech Enhancement - K.M. Nayem & D.S. Williamson

#### **Thank You**



Khandokar Md. Nayem

knayem@iu.edu



Donald S. Williamson williads@indiana.edu

Department of Computer Science Audio, Speech and Information Retrieval (ASPIRE) lab <u>https://aspire.sice.indiana.edu/</u> Indiana University, IN, USA



Incorporating Embedding Vectors from a Human Mean-Opinion Score Prediction Model for Monaural Speech Enhancement - K.M. Nayem & D.S. Williamson