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Motivation

f‘-n. Speech Enhancement (SE) systems target maximization of speech quality and
/\ intelligibility measured by various proposed objective functions.

human subjective evaluations.

Automatic speech assessment that measures the subjective score of enhanced

@ Current speech quality objective functions are often not strongly correlated with
\ ! U4
'@' speech can help SE systems to estimate better perceptual quality speech.
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Speech Quality Assessment Model
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[1] /l\ [1] X. Dong et. al, “A Pyramid Recurrent Network for
PMOS mOdeI Noisy Speech Predicting Crowdsourced Speech-Quality Ratings of

Real-World Signals,” in Proc. Interspeech, 2020.
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Attention-based SE Model
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Joint-learning SE Model
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Results

Table 1: Performance comparison with Figure 1: Average (a) SI-SDR, (b) ESTOI performance
MOS prediction models. of SE models on test speech in different SNRs.
vae | mmse | pec | smec ---- SE (sa+mos) -=+- SE+PMOS - Metricc[i4AN[z(]s.toi)
-+~ SE (sdr) --~- MetricGAN (pesq) -+- SSEMS (2b=0dB)
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PCC = Pearson’s correlation coefficient, -10 0 10 -10 0 10
SRCC = Spearman’s rank correlation coefficient, SNR SNR
SI-SDR = Scale-invariant signal-to-distortion ratio, (a) SNR vs SI-SDR (b) SNR vs ESTOI

ESTOI = extended short-time objective intelligibility,
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Results

Table 2: Average results of the SE models in different performance metrics.

COSINE VOICES
Loss function PESQ SI-SDR ESTOl MOS-LQO| PESQ SI-SDR ESTOl MOS-LQO
Mixture - 1.46 0.53 0.62 4.04 1.26 -1.3 0.48 2.74
SE mse 2.68 2.8 0.8 3.2 2.3 1.2 0.69 3.5
mos 2.8 3.8 0.82 4.2 2.37 1.66 0.74 53
mse, sa 2.72 3.1 0.82 4 2.35 1.6 0.7 3.8
sa, mos 2.89 4.1 0.85 4.4 2.42 172 0.77 5.7
sdr 2.7 4.5 0.82 4 2.32 2.01 0.72 4.5
mse 3.1 4 0.85 4.2 2.48 1.8 0.8 6
(S;ZZES;) mse, sa 3.19 4.6 0.93 4.8 254 208 086 6.3
mse, sa, mos 3.19 4.5 0.92 51 2.53 2.06 0.84 6.5
MetricGANE31 | pesq 3.28 4.4 0.9 5 2.67 2.01 0.83 6.1
stoi 3.19 4.3 0.94 4.8 2.5 2 0.87 5.8
SSEMSI4] gnet (¢=0dB) 2.85 2.9 0.83 3 2.4 1.8 0.7 2.8
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Conclusion

Our proposed speech enhancement model utilizes a speech quality MOS assessment metric
in a joint learning manner.

Results show that proposed SE+PMOS model outperforms other models in different noisy
environments.

We evaluate our model’s subjective score using an MOS- estimation model.

Our assessment model provides utterance-level feedback, which may be sub-optimal since
the model’s embeddings are calculated at the frame level.
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