
RSGAN: Recurrent Stacked Generative Adversarial
Network for Conditional Video Generation

Shujon Naha, Khandokar Md. Nayem, Md. Lisul Islam
School of Informatics and Computing

Indiana University
Bloomington, IN

{snaha, knayem, islammdl}@iu.edu

Abstract

Generating video frames based on a pre-condition is a challenging problem and
requires understanding of per frame contents and visual dynamics and their
relevacies to the pre-condition. In this paper, we propose a novel Recurrent
Stacked Generative Adversarial Network (RSGAN) based model to generate video
frames based on a given pre-condition. The pre-condition can be anything related
to the generated video, like- action classes, sentence descriptor, fMRI signal, etc.
In our knowledge, this is the first work to address the problem of conditional video
generation using adversarial network.

Index Terms: rsgan, recurrent netwok, stacked generative adversarial net-
work, adversarial network, conditional video generation, video generation.

1 Introduction

Generative adversarial networks have been shown incredible results to produce images from pre-
conditions such as text, attributes etc [36, 34]. In these works, random noises incorporated with a
semantic vector representation of the prec-condition is given as input to the generator network to
produce images relevant to the pre-condition. The discriminator network then learns to distinguish
between the images generated by the generator and the real image from the database. A min-max
learning algorithm is used to train these both models where the generator tries to continously fool
the discriminator by producing better images similar to the original one and the discriminator learns
to make the job harder for the generative network by getting better at distinguishing real and fake
images. Most of the times, the generative network is a convolutional neural network which produces
image from a single vector by using several deconvolution steps. The discriminator network is also
a convolutional neural network which takes the image from the generator network output and the
corresponding original image from the database and tells the similarity between the generated image
and the real image.

Generative adversarial networks have been also used for predicting future frames from a video
sequence and generate videos with scene dynamics [16, 31]. In this works, multiple frames are
combined together and 3D convolution is used in the domains of space and time to predict the next
frames. These works have shown the capability of adversarial networks to capture the scene dynamics
although for small temporal intervals.

In this paper, we address the problem of generating videos based on pre-conditions such as action
classes, fMRI signals and sentence descriptions using adversarial network. Generating videos
based on pre-conditions pose a unique set of challenges than the conditional image generation and
unconditional video generation problem. In our case, each of the frames will be generated based on
the previous frames and the given pre-condition such as in Figure 1. The numbers of previous frames

Figure 1: Generating video sequence based on a given pre-condition (sentence description).

can vary from zero to a maximum number. Thus the usual approach of using 3D convolution will not
be applicable in our case. Moreover, we need to make the pre-condition available to the system at
each time frame so the whole generated video is consistent with the pre-condition.

2 Background

In this section will review FCN, RNN and GAN which will be repeatedly referred to through the
paper.

2.1 Fully Convolutional Networks (FCN)

For classification task using convolutional neural networks, the few last fully connected layers
are responsible for the classification part. But with pixel-wise labelling, there is a need for dense
predictions on all the pixels. In [14] the idea of using a fully convolutional neural network that is
trained for pixel-wise semantic segmentation is presented. It is shown that it surpasses the state of
the art in semantic segmentation on PASCAL VOC, NUYDv2, and SIFT Flow datasets. The FCN
method is briefly discussed in what follows.

FCN architecture is based on VGG [25] architecture due to its success in classification
tasks. However, due to the fully connected layers that these networks have, they can only accept fixed
size input and produce a classification label. To overcome this problem, it is possible to convert a
fully connected layer into a convolutional layer. Accordingly, this network can yield coarse maps
pixel wise prediction instead of one classification output.

In order to have dense prediction from this coarse map, it needs to be up-sampled to the
original size of the input image. The up-sampling method can be a simple bi-linear interpolation.
But in [14] a new layer that applies upsampling within the network was presented. It makes
it efficient to learn the up-sampling weights within the network using back-propagation. The
filters of the deconvolution layer act as the basis to reconstruct the input image. Another idea
for up-sampling is to stitch together output maps from shifted version of the input. But It was
mentioned in [14] that using up-sampling with deconvolution is more effective. In [18] the idea of
having a full deconvolution network with both deconvolution layers and unpooling layers is presented.

The FCN architecture has been tried in different applications. In [9] it is used for object
localization. In [32] modified architecture was used for visual object tracking. Finally for semantic
segmentation in [19] a full deconvolution network is presented with stacked deconvolution layers.

2.2 Recurrent Neural Networks (RNN)

Recurrent Neural Networks [30] are designed to incorporate sequential information into a neural
network framework. These networks are capable of learning complex dynamics by utilizing a hidden
unit in each recurrent cell. This unit works like a dynamic memory that can be changed based on
the state that the unit is in. Accordingly, the process of each unit yields to two outcomes. Firstly,
an output is computed from the current input and the hidden units values (the networks memory).
Secondly, the network updates its memory based on, again, current input and hidden units value. The
simplest recurrent unit can be modeled as,

ht = θφ(ht−1) + θxxt

yt = θyφ(ht)

2

Here, h is the hidden layer, x is the input layer and y is the output layer and φ is the activation function.

Recurrent networks were successful in many tasks in speech recognition and text under-
standing [28] but they come with their challenges. Unrestricted data flow between units causes
problems with vanishing and exploding gradients [1]. During the back propagation through recurrent
units, the derivative of each node is dependent of all the nodes which processed earlier. This is shown
in following equations where E is the loss of the layer. To compute ∂ht

∂hk
a series of multiplication

from k = 1 to k = t− 1 is required. Assume that φ is bounded by α then || ∂ht

∂hk
|| < αt−k

∂E

∂θ
=

t=S∑
t=1

∂Et

∂θ

∂Et

∂θ
=

k=t∑
k=1

∂Et

∂yt

∂yt
∂ht

∂ht
∂hk

∂hk
∂θ

∂ht
∂hk

=

t∏
i=k+1

∂hi
∂hi−1

=

t∏
i=k+1

θT diag[φ(hi−1)]

A solution to this problem is to use gated structures. The gates can control back propagation flow
between each node. Long-Short Term Memory [8] is the first such proposed architecture and it is
still popular. A more recent architecture is Gated Recurrent Unit [2] which has simpler cells yet with
competent performance [3].

2.2.1 Long Short Term Memory (LSTM)

As mentioned, LSTM uses a gated structure where each gate controls the flow of a particular signal.
Each LSTM node has three gates that are input, output and forget gate each with learnable weights.
These gates can learn the optimal way to remember useful information from previous states and
decide the current state.
In the following equations, the procedure of computing different gates and hidden states is shown,
where it, ft and ot are input, forget and output gates respectively. While ct denote the cell internal
state, and ht is the hidden state.

it = σ(Wxi
xt +Whi

ht−1 + bi)

ft = σ(Wxf
xt +Whf

ht−1 + bf)

ot = σ(Wxo
xt +Who

ht−1 + bo)

gt = σ(Wxc
xt +Whc

ht−1 + bc)

ct = ft � ct−1 + it � gt
ht = ot � φ(ct)

2.2.2 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit, similar to LSTM, utilizes a gated structure for flow-control. However,
it has a simpler architecture which makes it both faster and less memory consuming. The model is
shown in Figure 2, where rt, zt is the reset and update gate respectively, while ht is the hidden state.

zt = σ(Whzht−1 +Wxzxt + +bz)

rt = σ(Whrht−1 +Wxrxt + +br)

ĥt = Φ(Wh(rt � ht−1) +Wxxt + +b)

ht = (1− zt)� ht−1 + z � ĥt
GRU does not have direct control over memory content exposure while LSTM has it by having an
output gate. These two are also different in the way that they update the memory nodes. LSTM
updates its hidden state by summation over flow after input gate and forget gate. GRU however,
assumes a correlation between how much to keep from the current state and how much to get from
the previous state and it models this with the zt gate.

3

Figure 2: GRU Architecture. [29]

2.3 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) [6] are composed of two models that are alternatively trained
to compete with each other. The generator G is optimized to reproduce the true data distribution
pdata by generating images that are difficult for the discriminator D to differentiate from real images.
Meanwhile, D is optimized to distinguish real images and synthetic images generated by G. Overall,
the training procedure is similar to a two-player min-max game with the following objective function,

min
G

min
D

V (D,G) = Ex pdata
[logD(x)] + Ez pz

[log(1−G(z))]

where x is a real image from the true data distribution pdata, and z is a noise vector sampled from
distribution pz (e.g., uniform or Gaussian distribution).

Conditional GAN [5, 17] is an extension of GAN where both the generator and discrimina-
tor receive additional conditioning variables c, yielding G(z, c) and D(x, c). This formulation allows
G to generate images conditioned on variables c.

3 Our Approach

In our problem, we are given a pre-condition either in the form of an action class name, fMRI signal
or textual description and we need to generate a sequence of video frames which will be coherent
with the given pre-condition. First, we will discuss how we can generate a high resolution frame
independently based on the pre-condition using a stacked adversarial network. Then we will discuss
how we can make a recurrent fully convolutional network so we can propagate the context to generate
the next frame. Finally, we will describe our recurrent stacked adversarial network to generate videos
based on pre-conditions.

3.1 Stacked Adversarial Network

To generate a video first, we need to learn to generate a single frame from the pre-condition. We
have adapted the StackGAN adversarial network model [36] for this problem, as it can generate
photo-realistic images from sentence descriptions. At first stage, this model generates an image based
on the encoded text and a random vector. Then the generated image in the first stage is used as the
input with the encoded text vector to the second stage adversarial network to generate a photo-realistic
image. The architecture of the model can be seen in Figure 3.

3.1.1 Stage-I GAN

As shown in Figure 3, the conditioning text description t is first encoded by an encoder, yielding
a text embedding ϕt. In previous works [12, 20], the text embedding is nonlinearly transformed
to generate conditioning latent variables for the generator. However, latent space conditioned on
text is usually high dimensional (> 100 dimensions). With limited amount of data, it usually causes
discontinuity in the latent data manifold, which is not desirable for learning the generator.
To mitigate this problem, we introduce a conditioning augmentation technique to produce more
conditioning variables for the generator. We randomly sample latent variables from an independent
Gaussian distributionN(µ(ϕt),Σ(ϕt)), where the mean µ(ϕt) and diagonal covariance matrix Σ(ϕt)
are functions of the text embedding ϕt. The proposed formulation encourages robustness to small

4

Figure 3: The architecture of the StackGAN from [36]. The Stage-I generator draws a low resolution
image by sketching rough shape and basic colors of the object from the given text and painting the
background from a random noise vector. The Stage-II generator generates a high resolution image
with photo-realistic details by conditioning on both the Stage-I result and the text again.

perturbations along the conditioning manifold, and thus yields more training pairs given a small
number of image-text pairs. To further enforce the smoothness over the conditioning manifold and
avoid overfitting [4, 13], we add the following regularization term to the objective of the generator
during training,

DKL(N(µ(ϕt),Σ(ϕt))||N(0, I))

which is the Kullback-Leibler divergence (KL divergence) between the standard Gaussian distribution
and the conditioning Gaussian distribution.

Conditioned on Gaussian latent variables c0, Stage-I RSGAN trains discriminator D0 and
generator G0 by alternatively maximizing LD

and minimizing LG
.

LD = E(I,t)∼pdata
[logD0(I0, ϕt)] + Ez∼pz,t∼pdata

[log(1−D0(G0(z, c0), ϕt))]

LG = Ez∼pz,t∼pdata
[log(1−D0(G0(z, c0), ϕt))] + λDKL(N (µ0(ϕt),Σ0(ϕt))||N (0, I))

where the real image I0 and the text description t are from the true data distribution pdata z is a noise
vector randomly sampled from a given distribution pz (e.g., Gaussian distribution used in this paper).
λ is a regularization parameter that controls the balance between the two terms of LG

. We use λ = 1
for all our experiments. ϕt is the text embedding, which is generated by a pre-trained encoder [21] in
this paper. Gaussian conditioning variables c0 are sampled from N(µ0(ϕt),Σ0(ϕt)) to reflect the
text description. Using the reparameterization trick introduced in [22], both µ0(ϕt) and Σ0(ϕt) are
learned jointly with the rest of the network.

Model Architecture For the generator, the text embedding ϕt is fed into a fully connected
layer to generate µ0 and σ0 (σ0are the values in the diagonal of Σ0) for Gaussian distribution
N(µ(ϕt),Σ(ϕt)). Our Ng dimensional conditioning vector c0 is computed by c0 = µ0 + σ0 � ε
(where � is the element-wise multiplication, ε N(0, I)). Then, c0 is concatenated with a Nz dimen-
sional noise vector to generate a W0 ×H0 image by a series of up-sampling blocks.
For the discriminator, the text embedding ϕt is first compressed to Nd dimensions using a fully-
connected layer and then spatially replicated to form a Md×Md×Nd tensor. Meanwhile, the image
is fed through a series of downsampling blocks until it has Md ×Md spatial dimension.Then, the
image filter map is concatenated along the channel dimension with the text tensor. The resulting
tensor is further fed to a 1× 1 convolutional layer to jointly learn features across the image and the
text. Finally, a fully connected layer with one node is used to produce the decision score.

5

3.1.2 Stage-II GAN

Low resolution images generated by Stage-I GAN lack vivid object parts and might also contain
shape distortions. In addition, some details in the text might be omitted in the first stage. This is
important information needed to generate a photo-realistic image. Stage-II GAN is built upon Stage-I
GAN to generate photo-realistic high resolution images. It conditions on low resolution images
generated by the previous stage, and also the text embedding again to correct defects in Stage-I
results and encourage the model to extract previously ignored information in the text to generate
more photo-realistic details.

Conditioned on the low resulation sample s0 and Gaussian latent variables c, discriminator
D and generator G in Stage-II RSGAN is trained by alternatively maximizing LD and minimizing
LG.

LD = E(I,t)∼pdata
[logD(I, ϕt)] + Es∼pG,t∼pdata

[log(1−D(G(s0, c), ϕt))]

LG = Es∼pG,t∼pdata
[log(1−D(G(s0, c), ϕt))] + λDKL(N (µ(ϕt),Σ(ϕt))||N (0, I))

where s0 = G0(z, c0) is generated by Stage-I GAN. Different from the original GAN formulation,
the random noise z is not used in this stage with the assumption that the randomness has already been
preserved in s0. Gaussian conditioning variables c used in this stage and c0 used in Stage-I GAN
share the same pre-trained text encoder, generating the same text embedding ϕt. But, they utilize
different fully connected layers for generating different means and standard deviations. In this way,
Stage-II GAN learns to capture useful information in the text embedding that is omitted by Stage-I
GAN.

Model Architecture For the generator, similar to the previous stage, ϕt is used to generate our Ng

dimensional Gaussian conditioning vector c, which is spatially replicated to form a Mg ×Mg ×Ng

tensor. Meanwhile, the sample s0 generated by Stage-I GAN is fed into several downsampling blocks
until it has a spatial size of Mg ×Mg . Then, the image filter map and the text tensor are concatenated
along the channel dimension. The resulting tensor is fed into several residual blocks [11, 7] to jointly
encode the image and text features, and finally a series of up-sampling blocks are used to generate a
W ×H image.
For the discriminator, its structure is similar to that of Stage-I discriminator with only extra down-
sampling blocks since the image size is larger in this stage. To explicitly enforce GAN to learn better
alignment between the image and the conditioning text, rather than using the naive discriminator, we
adopt the matching-aware discriminator proposed by Reed et al. [22] for both stages. During training,
the discriminator takes real images and their corresponding text descriptions as positive sample pairs,
whereas negative sample pairs consist of two groups. The first is real images with mismatched text
embeddings, while the second is synthetic images with conditioning text embeddings.

3.2 Recurrent Fully Convolutional Network

Now to generate a video, we need to pass the contextual information from previous frames to the
current frame so the frames are coherent to each other. For the discriminator network, we can do
that using a regular LSTM network. The discriminator network generates a vector from the input
images which can be transfered to the next instance of the discriminator. But the generator network
is mostly a fully convolutional neural network, it is not straightforward to create a recursive model
for the generator. We have considered the recurrent fully convolutional network [29] to solve this
problem. The model uses convolutional gated recurrent units which establishes recurrent connections
between the colvolutional layers. This model preserves the spatial information while passing context
to the next LSTM unit and reduces the number oflearned parameters as well. The model is described
in Figure 4.

3.2.1 Convolutional Gated Recurrent Unit (Conv-GRU)

Conventional recurrent units are capable of processing temporal data however, their architecture
is not suitable for working on images/feature maps for two reasons. 1) weights matrix size, 2)
ignoring spatial connectivity. Assume a case where a recurrent unit is placed after a feature map
with the spatial size of h × w and have a number of channels c. After flattening, it will turn into

6

Figure 4: The architecture of RFC-VGG from [29]. Images are fed frame by frame into a recurrent
FCN. A Conv-GRU layer is applied on the feature maps produced by the preceding network at each
frame. The output of this layer goes to one more convolutional layer to generate heat maps. Finally, a
deconvolution layer up-samples the heat map to the desired spatial size.

a c × h.w long matrix. Therefore, weights of the recurrent unit will be of size c × (h.w)2 which
is power four of spatial dimension. These matrices for weights can only be maintained for small
feature maps. Even if the computation was not an issue, such design introduces too much variance
in the network which prevents generalization. In Convolutional recurrent units, similar to regular
convolutional layer,weights are three dimensional and they convolve with the input instead of dot
product. Accordingly, the cell’s model, in the case of a GRU architecture, will turn into equations
bellow where the dot products are replaced with convolutions. In this design, weights matrices
are of size kh × kw × c × f where kh, kw, c and f are kernel’s height, kernel’s width, number of
input channels, and number of filters, respectively. In Figure 2 the operations applied on the input
and the previous step will all be convolutions instead. Since we can assume spatial connectivity in
feature maps, kernel size can be very small compared to feature map’s spatial size. Therefore, this
architecture is much more efficient and weights are easier to learn due to smaller search space.

zt = σ(Whz ∗ ht−1 +Wxz ∗ xt + +bz)

rt = σ(Whr ∗ ht−1 +Wxr ∗ xt + +br)

ĥt = Φ(Wh ∗ (rt � ht−1) +Wx ∗ xt + +b)

ht = (1− zt)� ht−1 + z � ĥt
We employ this approach for segmentation in a fully convolutional network. It is possible to apply
this layer on either heat maps or feature maps. In the first case, the output of this layer will directly
feed into the deconvolution layer and produces the pixel-wise probability map. In the latter case, at
least one CNN layer needs to be used after the recurrent layer to convert its output feature maps to a
heat map.

3.3 Recurrent Stacked Generative Adversarial Network (RSGAN)

Now, we have the models to generate individual images from the pre-condition and also we can
connect this individual adversarial networks using recurrent connection. We combine these two
models and propose the Recurrent Stacked Generative network (RSGAN) for conditional video
generation. The model expands both in the temporal and spatial dimension. Each module in the first
stage takes the encoded pre-condition and a random vector as input and passes a contextual matrix to
the next module to generate a low resolution frame sequence. Then the modules in the second stage
takes the encoded pre-condition and the low resolution output from the previous stage to generate a
high resolution video sequence. The model is described in Figure 5.

4 Experiments

This section presents our experiments and results. First, we describe the datasets that we used then,
we discuss our training methods and implemented hyper-parameters settings. Finally, quantitative
and qualitative results are shown.

7

Figure 5: The proposed Recurrent Stacked Generative network (RSGAN). The recurrent adversarial
network modules at the first stage (RGAN-1) take the encoded pre-condition and a random vector zt
and then produces a low resolution (64× 64) size image. The modules at stage-2 (RGAN-2) takes
the generated image at stage-1 and the encoded pre-condition to generate a high resolution image
(256× 256).

4.1 Datasets

In this paper four datasets are used: 1) NTU RGB+D Action Recognition Dataset, 2) UCF-101
Dataset.

4.1.1 NTU RGB+D Action Recognition Dataset

NTU RGB+D action recognition dataset consists of 56,880 action samples containing RGB videos,
depth map sequences, 3D skeletal data, and infrared videos for each sample [24]. This dataset
is captured by 3 Microsoft Kinect v.2 cameras concurrently. The resolution of RGB videos are
1920× 1080, depth maps and IR videos are all in 512× 424, and 3D skeletal data contains the three
dimensional locations of 25 major body joints, at each frame.

4.1.2 UCF-101 Dataset

UCF101 [27] dataset is an action recognition data set of realistic action videos, collected from
YouTube, having 101 action categories. With 13320 videos from 101 action categories, UCF101 gives
the largest diversity in terms of actions and with the presence of large variations in camera motion,
object appearance and pose, object scale, viewpoint, cluttered background, illumination conditions,
etc. The videos in 101 action categories are grouped into 25 groups, where each group can consist of
4-7 videos of an action. The videos from the same group may share some common features, such
as similar background, similar viewpoint, etc. The action categories can be divided into five types:
1)Human-Object Interaction 2) Body-Motion Only 3) Human-Human Interaction 4) Playing Musical
Instruments 5) Sports.

4.2 Evaluation Metrics

To our knowledge, there is no existing published paper or method that accommodates RSGAN
architecture and its performace. open source framework that accommodates RFCNN architecture. So
as the baseline, we utilize only Stage-I GAN of our Stack-GAN for generating 64× 64 images to
investigate whether the stack structure is beneficial. Then we modify our Stack-GAN to generate
128× 128 images to investigate whether larger images by our method results in clearer images. And
we input text at both stages for generating images of better quality.

It is difficult to evaluate the performance of generative models (e.g., GAN). Asking human
annotators to determine the visual quality of samples is most intuitive and reliable. We also choose a
recently proposed numerical assessment approach inception score [23] for quantitative evaluation,

I = exp
(
ExDKL

(
p(y|x)||p(y))

))
8

where x denotes one generated sample, and y is the label predicted by the Inception model [28].
The intuition behind this metric is that good models should generate diverse but meaningful images.
Therefore, the KL divergence between the marginal distribution p(y) and the conditional distribution
p(y|x) should be large.

4.3 Training Methods and Implementation

From NTU RGB+D Dataset, we use only the 3D skeletal videos which are 2-5s long each and each
video is labeled by an action label. Skeletal video frames are based on the locations of the detected
body joints, and join them by a line. For good performance, we use mask to remove the background
and less important parts of the depth maps and to improve the compression rate.

StanGan Implementaion The up-sampling blocks consist of the nearest-neighbor upsampling
followed by a 3× 3 stride 1 convolution. Batch normalization [10] and ReLU activation are applied
after every convolution except the last one. The residual blocks consist of 3× 3 stride 1 convolutions,
Batch normalization and ReLU. Two residual blocks are used in 128 × 128 StackGAN models
while four are used in 256 × 256 models. The down-sampling blocks consist of 4 × 4 stride 2
convolutions, Batch normalization and LeakyReLU [15, 33], except that the first one does not have
Batch normalization.
By default, Ng = 128, Nz = 100,Mg = 16,Md = 4, Nd = 128,W0 = H0 = 64andW = H =
256. For training, we first iteratively train D0 and G0 of Stage-I GAN for 600 epochs by fixing
Stage-II GAN. Then we iteratively train D and G of Stage-II GAN for another 600 epochs by fixing
Stage-I GAN. All networks are trained using ADAM solver with batch size 64 and an initial learning
rate of 0.0002. The learning rate is decayed to 1

2 of its previous value every 100 epochs.

Conv-GRU Implementaion RFC-VGG in figure 6 is based on VGG-F [26] network. Initializing
weights of our filters by VGG-F trained weights, alleviates over-fitting problems as these weights
are the result of extensive training on the imagenet. The network is cast to a fully convolutional
one by replacing the fully connected layers with convolutional layers. The last two pooling layers
are dropped from VGG-F to allow a finer frame. Then a convolutional gated recurrent unit is used
followed by one convolutional layer and then deconvolution for up-sampling. Figure 4 shows the
detailed architecture of RFC-VGG.

Figure 6: Proposed Conv-GRU networks. F (n) denotes filter size of n× n. P (n) denotes total of
n zero padding around the feature map. S(n) denotes stride of length n for the convolution. D(n)
denotes number of output feature maps from a particular layer n for a layer (number of feature maps
is same as previous layer if D is not mentioned).

4.4 Qualitative Results

NTU RGB+D Action Recognition Dataset The main experiments are conducted using Adadelta
[35] for optimization that practically gave much faster convergence than standard stochastic gradient

9

descent. The logistic loss function is used and the maximum number of epochs used for the training
is 500.

(a) Action: Drink water. (b) Action: Drop.

(c) Action: Point finger at the other person. (d) Action: Reading.

(e) Action: Slapping other person. (f) Action: Tablet.

(g) Action: Writing.

Figure 7: Example results by our proposed RSGAN. The first row is the ground truth, and the second
row is the output frame of RSGAN.

UCF-101 Dataset UCF-101 videos are more realistic and, has complex texture and sturctural
relations among various objects. We train our RSGAN using first 90 action classes and later try to
generate videos for other 11 classes. We input the word-vector representation of the action class
names and use those as the pre-conditions to generate the videos.

(a) (b)

Figure 8: Example results by our proposed RSGAN. The first coulmn is a ground truth frame of the
input action class, and the other columns are the output frames of RSGAN.

10

5 Conclusion and Future Works

We have proposed a novel adversarial network based model to generate videos based on a given
condition. Our model can generate video frames which are coherent and consistent to the given
condition. Since no published work is still avaiable to address this pre-condition video, it is very
difficult to compare performance with. Right now, for simple detailed video like, NTU RGB+D
Action Recognition Dataset, RSGAN is most likely generate somewhat consistant video frames. But
for complex scene of UCF-101 Dataset, the result is very poor. In future, we are like to investigate
whether applying batch normalization in GRU can imporve the result like it does in StanGan module.
And if we get any success in that, then we will extend our pre-condition to VIM-2 dataset [18]. In
this dataset, fMRI BOLD signals from human brain will be used to simulate video frames.

References
[1] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult.

Neural Networks, IEEE Transactions , 5(2):157–166, 1994.

[2] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine translation:
Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

[3] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[4] C. Doersch. Tutorial on variational autoencoders. arXiv:1606.05908, 2016.

[5] J. Gauthier. Conditional generative adversarial networks for convolutional face generation. Technical
report, Tech Report, 2015.

[6] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and
Y. Bengio. Nips. In Generative adversarial nets, 2014.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Cvpr. In Deep residual learning for image recognition, 2016.

[8] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

[9] L. Huang, Y. Yang, Y. Deng, and Y. Yu. Densebox: Unifying landmark localization with end to end object
detection. arXiv preprint arXiv:1509.04874, 2015.

[10] S. Ioffe and C. Szegedy. Icml. In Batch normalization: Accelerating deep network training by reducing
internal covariate shift, 2015.

[11] J. Johnson, A. Alahi, and L. Fei-Fei. Eccv. In Perceptual losses for real-time style transfer and super-
resolution, 2016.

[12] D. P. Kingma and M. Welling. Iclr. In Auto-encoding variational bayes, 2014.

[13] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Icml. In Autoencoding beyond pixels
using a learned similarity metric, 2016.

[14] G. Lin, C. Shen, I. Reid, and et al. Efficient piecewise training of deep structured models for semantic
segmentation. arXiv preprint arXiv:1504.01013, 2015.

[15] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Icml. In Rectifier nonlinearities improve neural network acoustic
models, 2013.

[16] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error.
arXiv preprint arXiv:1511.05440, 2015.

[17] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv:1411.1784, 2014.

[18] S. Nishimoto, A. T. Vu, T. Naselaris, Y. Benjamini, B. Yu, and J. L. Gallant. Reconstructing visual
experiences from brain activity evoked by natural movies. In Current Biology, volume 21(19), pages
1641–1646, 2011.

[19] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proceedings
of the IEEE International Conference on Computer Vision, page 1520–1528, 2015.

11

[20] S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and H. Lee. Nips. In Learning what and where to draw,
2016.

[21] S. Reed, Z. Akata, B. Schiele, and H. Lee. Cvpr. In Learning deep representations of fine-grained visual
descriptions, 2016.

[22] Z. A. S. Reed, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Icml. In Generative adversarial text-to-image
synthesis, 2014.

[23] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for
training gans. NIPS, 2016.

[24] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. NTU RGB+D: A Large Scale Dataset for 3D Human Activity
Analysis. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[25] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[26] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[27] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A Dataset of 101 Human Action Classes From Videos in
The Wild. CRCV-TR-12-01, 2012.

[28] I. Sutskever, J. Martens, and G. E. Hinton. Proceedings of the 28th International Conference on Machine
Learning (ICML-11). In Generating text with recurrent neural networks, page 1017–1024, 2011.

[29] S. Valipour, M. Siam, M. Jagersand, and N. Ray. Recurrent Fully Convolutional Networks for Video
Segmentation. arXiv preprint arXiv:1611.09904, 2016.

[30] O. Vinyals, S. V. Ravuri, and D. Povey. Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference. In Revisiting recurrent neural networks forrobust asr, page 4085–4088, 2012.

[31] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with scene dynamics. In In Advances In
Neural Information Processing Systems, pages 613–621, 2016.

[32] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional networks. In
Proceedings of the IEEE International Conference on Computer Vision, page 3119–3127, 2015.

[33] B. Xu, N. Wang, T. Chen, and M. Li. Icml workshop. In Empirical evaluation of rectified activations in
convolutional network, 2015.

[34] X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image: Conditional image generation from visual
attributes. In In European Conference on Computer Vision, pages 776–791. Springer International, October
2016.

[35] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

[36] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas. StackGAN: Text to Photo-realistic
Image Synthesis with Stacked Generative Adversarial Networks. arXiv preprint arXiv:1612.03242, 2016.

12

	Introduction
	Background
	Fully Convolutional Networks (FCN)
	Recurrent Neural Networks (RNN)
	Long Short Term Memory (LSTM)
	Gated Recurrent Unit (GRU)

	Generative Adversarial Networks (GAN)

	Our Approach
	Stacked Adversarial Network
	Stage-I GAN
	Stage-II GAN

	Recurrent Fully Convolutional Network
	Convolutional Gated Recurrent Unit (Conv-GRU)

	Recurrent Stacked Generative Adversarial Network (RSGAN)

	Experiments
	Datasets
	NTU RGB+D Action Recognition Dataset
	UCF-101 Dataset

	Evaluation Metrics
	Training Methods and Implementation
	Qualitative Results

	Conclusion and Future Works

