
Knowledge Distillation on Joint Task End-to-End Speech Translation

Khandokar Md. Nayem§ , Ran Xue† , Ching-Yun Chang† , Akshaya Vishnu Kudlu Shanbhogue†

§Department of Computer Science, Indiana University, Bloomington, USA
†Amazon, Alexa AI, Cambridge, USA

knayem@iu.edu, {ranxue, cychang, ashanbho}@amazon.com

Abstract
An End-to-End Speech Translation (E2E-ST) model takes in-
put audio in one language and directly produces output text in
another language. The model requires to learn both speech-to-
text modality conversion and translation tasks, which demands
a large architecture for effective learning of this joint task. Yet,
to the best of our knowledge, we are the first to optimize com-
pression of E2E-ST models. In this work, we explore knowledge
distillation for a cross-modality joint-task E2E-ST system from
3 dimensions: 1) student architecture and weight initialization
scheme, 2) importance of loss terms associated with different
tasks and data modalities, 3) knowledge distillation training
scheme customized for the multi-task/module model. Compar-
ing with the full size model, our compressed model’s encoder
and decoder size are 50% smaller, while it retains 90% and
> 95% performance on speech translation task and machine
translation task respectively on MUST-C en→de testset.
Index Terms: speech translation, knowledge distillation, joint
task, deep learning

1. Introduction
Speech Translation (ST) allows for the conversion of spoken
audio into written text in various languages. Typically, this is
accomplished by using a cascaded system of Automatic Speech
Recognition (ASR) and Text-to-Text Translation models. Re-
cent End-to-End (E2E) models, like the FAIR Speech Transla-
tion (FAIR-ST) System [1], can perform ST task using a single
model and produce similar results as the traditional cascaded
approach [2, 3]. Compared to cascaded models, E2E-ST models
offer faster inference, reduced compounding errors, and lower
overall system complexity [4, 5].

Recently, transformer-based E2E-ST models have gained
widespread adoption [1, 6]. These models are responsible for
two tasks: converting speech input to text representation and
then performing the translation. A typical E2E-ST model re-
quires a large number of parameters. For example, the Alexa-ST
model [7] consists of a speech encoder, a text encoder connected
through an adapter, and a unified decoder for the translation task,
which results in a model of 1050.1 million parameters and a
footprint of 2.1 GB with float16. This poses a limitation when
E2E-ST models need to be deployed on-device for real life appli-
cation [8]. Therefore, a compressed ST model is often desirable.
A single model architecture can facilitate compression in one
shot. However, there is a lack of research in optimizing the
compression for cross-modality joint task models.

One common approach to reduce model size is through
Knowledge Distillation (KD) [9] which is a technique to transfer
knowledge from an expert teacher model to a compressed stu-

§ Work done during an internship at Amazon Alexa AI.

dent model in a supervised manner, with additional conditions
applied on the transferable knowledge, such as response-based,
feature-based, and relation-based [10]. In the machine transla-
tion (MT) domain [11, 12], KD is a well-established approach
used for training small models retaining expert model perfor-
mance. In the E2E-ST task, [13] and [6] independently propose
a similar structure E2E-ST model with an MT teacher model,
but they attach an additional feature extraction module without
compressing the model. To the best of our knowledge, there is no
work yet on compressing an E2E-ST model to reduce the model
size. This may be due to the challenge that smaller models can
only learn knowledge from an expert teacher model to a certain
extent [14], and the speech-to-text modality mapping is a major
performance bottleneck in E2E-ST task [15].

In this work, we aim to compress a large E2E-ST model
into a smaller model with 50% less parameters while performing
similar to the teacher model. We consider Alexa-ST model as
our baseline model, and apply different KD loss terms during
training our smaller model, so that it can effectively transfer
knowledge from the teacher model. We focus on, 1) finding
smaller model architecture and weight initialization, 2) iden-
tifying effective KD loss terms, and 3) exploring progressive
training scheme.

2. Model
Alexa-ST model [7] is an E2E-ST system which takes both
speech and text as input for speech translation model training.
This model shares the same architecture as FAIR-ST [1] with im-
proved loss function. We consider the original Alexa-ST model
as the baseline model, from which we build our compressed
models.

2.1. Baseline model

Our base model employs an encoder-decoder architecture, featur-
ing two encoder units: a text encoder and a speech encoder, and
one decoder unit. The text encoder is a 12-layer transformer, pre-
trained with the mBART encoder [1]. The speech encoder is a
24-layer transformer, where the first 12 layers and the speech fea-
ture extractor are pre-trained using the Wav2Vec 2.0 model [16].
The remaining 12 layers of the speech encoder share the same
weights as the text encoder. An adaptor [12] made up of three
1-D convolution layers with a stride of two is inserted between
the speech encoder and text encoder to compress the speech
encoder output by a factor of eight. The decoder is pre-trained
using the mBART [17] decoder and is shared by both speech
and text modalities. For pre-trained models, only the Layer-
Norm and Attention (LNA) [12] parameters are fine-tuned for
data efficiency and cross-lingual knowledge learning. Figure 1
shows the overview of the model structure where encoder has
24-transformer layers and decoder has 12-transformer layers.

Figure 1: Overview of our proposed model. The flow of speech and text modalities are represented by yellow and blue lines, respectively.
Number of encoder and decoder layers differs between baseline and compressed models.

2.2. Compressed model

We simplify the model structure by reducing the number of lay-
ers in the speech encoder, text encoder, and decoder. In Figure 1,
the compressed model has 12 transformer layers in the encoder
and 6 transformer layers in the decoder when using the 6-6-6
configuration. In the 8-8-2 configuration, the encoder has 16
layers and the decoder has 2 layers. Note that in this work we
focus on using a general model compression scheme which ex-
cludes the vocabulary trimming, namely reducing the embedded
parameters of mBART, since the vocabulary size depends on the
translation languages and domains. Table 1 shows the details of
model parameter size in our baseline and compressed models.
Average number of model parameters used by our proposed 50%
compressed models is ∼356 million (M), which corresponds to
57.8% of the total parameters in the baseline.

As proposed by [18], we initialize the compressed model
by copying weights from the baseline model’s layers that are
maximally spaced. When we initialize a 6-layer compressed
encoder/decoder from a 12-layer baseline encoder/decoder, we
choose [0−11]12 → {0, 2, 4, 7, 9, 11}6 layers from the baseline
model. In the 8-8-2 structure, we select {0, 2, 3, 5, 6, 8, 9, 11}8
layers from each encoder and {0, 11}2 layers from the decoder.
We apply this model compression scheme on both the encoder
(speech encoder and text encoder) and decoder, which differs
from the approach taken in [18] and [19] where only the text
encoder and decoder undergo compression.

3. Methodology
We train our model to perform both speech-to-text (S2T) and text-
to-text (T2T) translation. During training, we simultaneously
optimize these functions. We also use the knowledge distillation
(KD) framework [9,11], to compress a large model into a smaller
one that maintains similar performance. With this KD approach,
we explore different training schemes where we incrementally
train different modules of the smaller model.

3.1. Training objective function

Speech translation involves two data modalities, i.e. speech (sph)
and text (txt). To bridge the gap between these modalities, we
adapt the training objective function from [7, 20] as:

L =

total speech loss︷ ︸︸ ︷
(Lsph + Lt_guide) + Lsph_kd +

total text loss︷ ︸︸ ︷
Ltxt + Ltxt_kd +

Lcross_attn (1)

Table 1: Model size and number of parameters in the models.

models→ Baseline Compressed
SphEnc-TxtEnc-Dec 12-12-12 8-8-2 6-6-6
total params (M)↓ 616.33 347.6 364.4
total params(%)↓ 100 56.4 59.12
embedded params (M) 93.58 93.58 93.58
params excluding embedded (M)↓ 522.76 254.02 270.82
params excluding embedded(%)↓ 100 48.59 51.81

where the total speech loss is calculated as a weighted sum of the
S2T loss and the speech KD loss (referred to as Lsph_kd). The
S2T loss consists of two components: Lsph, the loss between
the hypothesis of speech and ground truth, and Lt_guide, the loss
between the hypothesis of speech and text [20]. In our proposed
KD model, the text hypothesis generated by the teacher model
is used to compute Lt_guide. The total text loss is calculated
in a similar manner using the T2T loss (Ltxt) and the text KD
loss (Ltxt_kd). Details on KD losses are discussed in section 3.2.
Additionally, Lcross_attn is the cross-attention regularization
from speech and text data modalities [20]. The S2T and T2T
losses are calculated using the dynamic dual skew divergence
(DDSD) [21] loss function, as previous studies have shown better
performance with this function compared to cross-entropy loss
in translation tasks. We use the following equation to calculate
DDSD loss between speech and text hypothesis:

D(T, S) = βDd(S||T) + (1− β)Dd(T ||S) (2)

Dd(T ||S) = Dkl

(
T ||(αT + (1− α)S)

)
(3)

Dd(S||T) = Dkl

(
S||(αS + (1− α)T)

)
(4)

Here Dkl is Kullback-Leibler (KL) divergence function, T and
S are text and speech hypotheses respectively, and α and β are
hyperparameters.

3.2. Knowledge distillation

In the KD framework [9], a teacher-student setting is used where
the student learns from both the ground-truth labels and the soft
labels provided by the teacher. The probability mass associated
with each class in the soft labels allows the student to learn
more information about the label similarities for a given sample.
This knowledge is referred to as response-based knowledge [10].
Later studies [11, 22] have shown that directly matching inter-
mediate layer outputs is more effective compared to using only
response-based KD, and this is known as feature-based knowl-
edge. Additionally, knowledge distillation on attention heads of
BERT model [23] has been proven to be effective, and this is
referred to as relation-based knowledge [11]. Here, our baseline
model (section 2.1) is considered the teacher model, and the com-
pressed model (section 2.2) is considered the student model. We
calculate these three types of KD losses (response-based, feature-
based, and relation-based) on both speech and text modalities
and represent them as Lsph_kd and Ltxt_kd, respectively. We
calculate the KD loss terms as follow:

LX_kd = LX
kd_res + LX

kd_feat + LX
kd_rel (5)

LX
kd_res =

∑
l∈{Lenc,Ldec}

D
(
P (XB

l), P (XM
l)

)
(6)

LX
kd_feat =

∑
l∈L

(
1− cos

(
lay(XB

l), lay(XM
l)

))
(7)

LX
kd_rel =

∑
l∈L

(
1− cos

(
attn(XB

l), attn(XM
l)

))
(8)

Table 2: Different training progression schemes. Active and
inactive loss terms are denoted using

√
and ×, respectively.

↓Scheme ↓Stage
KD loss Speech & Text

Sph Txt Decoder Guide loss
encoder encoder loss

Module
Sph encoder

√
× ×

√ √

Sph encoder + Txt encoder
√ √

×
√ √

Sph encoder + Txt encoder + Decoder
√ √ √ √ √

Task
Sph encoder

√
× × × ×

Sph encoder + Txt encoder
√ √

× ×
√

Sph encoder + Txt encoder + Decoder
√ √ √ √ √

All Same in all 3 stages
√ √ √ √ √

Here Lkd_res, Lkd_feat, and Lkd_rel represent response-based,
feature-based, and relation-based KD loss terms, respectively,
for a given data modality. We represent each layer of the model
as l and the layers of the model are L = {l0, l1, · · · }. X denotes
the modality (i.e. sph and txt) and Xl denotes layer-wise output.
The symbols B and M represent the baseline (teacher) and
compressed (student) models with KD, respectively. To calculate
Lkd_res (equation (6)), we consider the class probability P ()
from the last layer of the encoder (Lenc) and decoder (Ldec)
modules for both speech and text, then apply the DDSD loss
function D(). For the feature-based and relation-based KD
losses, we apply the cosine loss function to each transformer
layer l. In equation (7) and (8), we represent layer output and
self-attention head using lay() and attn(), respectively. During
the training of the student model, the weights of the teacher
model are fixed and set to evaluation mode, i.e. 0 dropout on the
teacher.

3.3. Training scheme

In translation tasks, the complexity of linguistic learning in-
creases from input to output, as reported in [24]. Typically, all
internal layers are distilled simultaneously, but [11] found that
training layers incrementally with KD loss performs well in ma-
chine translation tasks. Following this insight, we investigate
incremental training schemes where student models are trained
in three stages: 1) Sph encoder, 2) Sph encoder+Txt encoder,
and 3) Sph encoder+Txt encoder+Decoder. During these stages,
we consider three schemes, depending on which loss terms are
active or inactive. In the Module scheme, we incrementally ac-
tivate KD module losses and use S2T and T2T loss terms at
all times. In the Task scheme, we incrementally activate KD
module losses and only use S2T and T2T losses when the neces-
sary modules for inference are being trained. Since we initialize
the decoder with the pre-trained T2T model (mBART) weight,
the S2T hypothesis of the model in stage 1 and 2 may lead to
incorrect weight updates. Thus, the S2T loss (Speech & Guide
loss) is not used in stages 1 and 2. Also, in stage 1, the text
encoder is not trained, but it shares the last 12 layers with the
speech encoder. Therefore, any T2T inference during this partial
encoder training stage may have a negative impact on model
weight, and as a result, the T2T loss (Text loss) is not used in
stage 1. Finally, in the All scheme, we use all loss terms in all
stages. Table 2 shows the individual loss term activation in the
different training schemes. Note that we train each module of the
student model one after another, whereas [11] trains one layer
after another.

4. Experiments

In this section, we describe the datasets used, followed by a de-
tailed description of model training settings used in experiments.

4.1. Datasets

We train our models using MuST-C V2 [25], CoVoST v2 [26]
and Europarl-ST V1.1 train-clean dataset [27]. The combined
corpus contains audio-text pairs for E2E speech translation (ST),
including aligned source and target audio transcriptions. We only
consider en→de speech translation task. MuST-C covers 14 tar-
get languages of different families with English source audio,
including 408hrs of en→de speech. CoVoST provides transla-
tions of 21 languages-to-en and en-to-15 languages on Com-
mon Voice speech corpus [28] which includes 430hrs of en→de
speech with professionally collected transcriptions. Europarl-ST
supports translation between 6 European languages, including
83hrs of en→de speech which are constructed using debates in
the European Parliament. We discard audio clips shorter than
50ms and longer than the 30s. We hold off 1% of the training
data as the validation set. For evaluation, there are two test sets,
Common and HE, provided in the MuST-C V2 dataset. Since
both test sets have similar data quality and the Common set is
4.12 times larger than the HE set, we choose the MuST-C V2
Common test set to report model performance in this work.

4.2. Model Settings

We use the sequence modeling toolkit fairseq1 to train our mod-
els. To train our baseline teacher model, we adopt the base
model hyperparameter settings from [7] and set the loss weights
of Lsph, Lt_guide, Ltxt, and Lcross_attn as 0.2, 0.8, 0.2, and
0.02, respectively. In DDSD loss, α is set to 0.01 and β is set to
0.5. The model is initialized by pre-trained Wav2vec 2.0 [16] and
mBART [17] model weights. We apply the Adam optimizer [29]
and inverse square root scheduler. We set the warm-up phase
to 5k steps and the training batch size to a maximum of 3 for
both the base and proposed models. The model parameters are
updated in every 4 batch and trained until convergence when the
loss on dev set increases for 3 consecutive validation steps. With
initial learning rate 2.5× 10−4, the teacher model is trained for
∼ 24hrs.

Small sized student models use same configuration as the
teacher model; however, they are trained for longer time, i.e.
around 40hrs for 50% compressed models. Student models with
knowledge distillation loss terms use KD loss weights LX_kd of
0.5 and initial learning rate 5× 10−4. After the student model
converges on KD task, we continue to fine-tune the student model
without KD losses following the teacher model configuration,
i.e. weight of LX_kd = 0. Each model is trained on 8 NVIDIA
V100 GPUs on AWS P3 instances. Average training time for
non-KD and KD compressed models are ∼ 40hrs and ∼ 87.3hrs,
respectively.

5. Results
We use the Alexa-ST model as our baseline model, referred as B,
which has a higher number of transformer layers. We propose
student ST models, which have only half the transformer layers
of B, optimized using KD loss terms, represented as M . A
separate baseline C for compressed model is trained without
any KD losses. We evaluate BLEU scores for both speech input
and text input, and denote them as speech BLEU(BLEU [sph])
and text BLEU (BLEU [txt]). Note that text BLEU is just for
analyzing the model’s learning ability on MT task and is not a
metric for assessing speech translation.

1https://github.com/pytorch/fairseq

Table 3: Performance of compressed models using different
weight initialization schemes & structure. Best shown in bold.

↓ Models BLEU↑ Degradation (%)↓ BLEU ↑ Degradation (%) ↓
[sph] [sph] [txt] [txt]

B 29.75 - 32.94 -
C : 6-6-6 (fine-tuned) 23.1 18.6 31.18 5.34
C : 6-6-6 (pre-trained) 23.34 17.76 30.78 6.56
C : 8-8-2 (pre-trained) 22.97 19.06 28.6 13.18

5.1. Importance of model structure & weight initialization

We firstly experiment with different ways to initialize the com-
pressed model. We initialize the compressed model C (50%
compression) with pre-trained Wav2Vec2.0 and mBART model
weights, which is the same method used to initialize the base-
line model B and is referred as C:pre-trained. Additionally, we
initialize the C model with the fine-tuned weights from the B
model and refer to this model as C:fine-tuned. In this experiment,
we consider the 6-6-6 model structure for the compressed mod-
els. Table 3 shows the performance of these models compared to
the large teacher model. We find that the model initialized with
pre-trained parameters outperforms the model initialized using
teacher weights in speech BLEU by a large margin.
We then investigate two different model architectures, 6-6-6 and
8-8-2 configurations as described in section 2.2, both of which
achieve 50% of the model compression rate. The 8-8-2 configura-
tion is inspired by [30] which shows shallow decoders combined
with deep encoders can be beneficial in non-autoregressive MT
tasks. We initialize these models with pre-trained model weights
in light of the previous results. In both speech and text BLEU
(Table 3), the 6-6-6 model performs better than the other, indicat-
ing the importance of a comparatively deeper decoder module.
In these experiments, training parameters are similar to baseline
training, i.e. no KD approach is applied.

5.2. Importance of KD loss terms

We conduct experiments to evaluate the effectiveness of indi-
vidual KD loss and overall performance gain in a compressed
model. As shown in ablation study part of Table 4 , we individ-
ually apply KD loss terms to the smaller student model. The
model M : Lkd_res(enc) performs the best compared to the
other M models and the non-KD compressed model C. The
M : Lkd_feat model shows the next best performance, followed
by the M : Lkd_res(dec) model. We observe that using only
relation-based KD does not perform better than the non-KD C
model. From our experimental results, the most to least effective
KD loss terms are, 1) encoder response-based loss Lkd_res(enc),
2) decoder response-based loss Lkd_res(dec), and feature-based
loss Lkd_feat, 3) relation-based loss Lkd_rel.

Table 4: Performance of compressed models using KD losses.
Best shown in bold.

↓ Models BLEU↑ Degradation (%)↓ BLEU ↑ Degradation (%) ↓
[sph] [sph] [txt] [txt]

Baselines
B 28.38 - 32.94 -
C : 6-6-6 (pre-trained) 23.34 17.76 30.78 6.56

Ablation study on individual KD loss terms
M 23.24 18.11 31.03 5.8
M : Lkd_res(dec) 23.26 18.04 31.22 5.22
M : Lkd_res(enc) 23.78 16.21 31.31 4.95
M : Lkd_feat 23.69 16.53 31.05 5.74
M : Lkd_rel 21.66 23.68 29.98 8.99

Performance of student KD models
M : Lkd_res 24.72 12.9 32.15 2.4
M : Lkd_res(enc) + Lkd_feat 24.31 14.34 31.34 4.86
M : Lkd_res(enc) + +Lkd_avg(feat) 24.14 14.94 31.6 4.07
M : Lkd_res + Lkd_feat 24.38 14.09 31.58 4.13

Fine-tune the best-performing M : Lkd_res with S2T and T2T loss
M∗ : Lkd_res 25.33 10.75 32.07 2.64

Table 5: Performance of the student models using Lkd_res loss
and trained with different training scheme. Best shown in bold.

↓ Models BLEU↑ Degradation (%)↓ BLEU ↑ Degradation (%) ↓
[sph] [sph] [txt] [txt]

Baselines
M : Lkd_res 24.72 12.9 32.15 2.4
M∗ : Lkd_res 25.33 10.75 32.07 2.64

Performance of using different training schemes
M : module 24.47 13.78 31.77 3.55
M : task 25.11 11.52 31.69 3.79
M : all 24.4 14.02 31.93 3.07

Fine-tune with S2T and T2T loss
M∗ : module 24.78 12.68 31.64 3.95
M∗ : task 25.24 11.06 31.67 3.86
M∗ : all 25.16 11.35 31.72 3.7

Based on the findings of the ablation study, we experi-
ment with multiple KD loss terms. Table 4 shows the perfor-
mance of our proposed 50% compressed student KD-ST models.
Response-based KD (both encoder and decoder KD loss) gives
the best performance in both speech and text BLEU scores.
Additionally, we observe that adding both response-based and
feature-based KD results in a degradation in performance com-
pared with using response-based KD loss only, which may be
because the model has to optimize too many constraints at once.
We fine-tune the best-performing M : Lkd_res with S2T and
T2T loss, resulting in additional performance gain in the model
M∗ : Lkd_res with a 0.61 gain in speech BLEU.

5.3. Training scheme of compressed model

We investigate three progressive training schemes to improve stu-
dent model training. We use the best-performing M : Lkd_res

model configuration for this experiment. We train the model for
10 epochs in the first two stages, and then train it until conver-
gence. After full convergence, we fine-tune the models without
any KD loss terms, namely only performing the S2T and T2T
tasks. Table 5 shows the performance among different training
schemes. We observe that the model M : task outperforms
all the other training schemes and results in speech BLEU im-
provement over the highest performing non-incremental training
method M : Lkd_res before fine-tuning. This indicates that the
task incremental training method effectively transfers knowl-
edge from the teacher model. However, after fine-tuning, the
fine-tuned M∗ : task model did not outperform the fine-tuned
M∗ : Lkd_res model. This may be due to the incremental train-
ing method placing more emphasis on teacher-student knowl-
edge transfer than on achieving optimal S2T performance.

6. Conclusion
In this study, we conduct a detailed study on compressing joint
E2E speech translation models using knowledge distillation tech-
niques, which is among the pioneers in achieving competitive
results. Despite not reducing the size of vocabulary or embed-
dings, we observe only a 10.75% of the BLEU degradation with
50% model compression rates, on English to German transla-
tion. The performance of our models can be further improved
by optimal hyperparameter tuning, which was not the focus of
this work though. We also experiment with progressive module
training schemes for effective knowledge transfer. In the future,
we plan to extend this work to multiple languages, and gener-
alize the method to other E2E architectures in addition to our
transformer-based model. Furthermore, we will also investigate
incremental training schemes on a layer basis.

7. References
[1] Y. Tang, H. Gong, X. Li, C. Wang, J. Pino, H. Schwenk, and

N. Goyal, “Fst: the fair speech translation system for the iwslt21
multilingual shared task,” arXiv preprint arXiv:2107.06959, 2021.

[2] A. Anastasopoulos, O. Bojar, J. Bremerman, R. Cattoni,
M. Elbayad, M. Federico, X. Ma, S. Nakamura, M. Negri,
J. Niehues, J. Pino, E. Salesky, S. Stüker, K. Sudoh, M. Turchi,
A. Waibel, C. Wang, and M. Wiesner, “FINDINGS OF THE
IWSLT 2021 EVALUATION CAMPAIGN,” in Proceedings of
the International Conference on Spoken Language Translation
(IWSLT 2021). Bangkok, Thailand (online): Association for
Computational Linguistics, Aug. 2021. [Online]. Available:
https://aclanthology.org/2021.iwslt-1.1

[3] E. Ansari, A. Axelrod, N. Bach, O. Bojar, R. Cattoni, F. Dalvi,
N. Durrani, M. Federico, C. Federmann, J. Gu et al., “Findings
of the iwslt 2020 evaluation campaign,” in Proceedings of the
International Conference on Spoken Language Translation, 2020,
pp. 1–34.

[4] S. Deena, R. W. Ng, P. Madhyastha, L. Specia, and T. Hain, “Ex-
ploring the use of acoustic embeddings in neural machine transla-
tion,” in IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU). IEEE, 2017, pp. 450–457.

[5] H. Inaguma, K. Duh, T. Kawahara, and S. Watanabe, “Multilingual
end-to-end speech translation,” in IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU). IEEE, 2019, pp.
570–577.

[6] M. Gaido, M. A. Di Gangi, M. Negri, and M. Turchi, “End-to-end
speech-translation with knowledge distillation: Fbk@ iwslt2020,”
arXiv preprint arXiv:2006.02965, 2020.

[7] A. Shanbhogue, R. Xue, C. Y. Chang, and S. Campbell, “Amazon
alexa ai’s system for iwslt 2022 offline speech translation shared
task,” in Proceedings of the International Conference on Spoken
Language Translation (IWSLT 2022), 2022, pp. 169–176.

[8] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[9] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in
a neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7,
2015.

[10] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation:
A survey,” International Journal of Computer Vision, vol. 129, pp.
1789–1819, 2021.

[11] G. Aguilar, Y. Ling, Y. Zhang, B. Yao, X. Fan, and C. Guo, “Knowl-
edge distillation from internal representations,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 05,
2020, pp. 7350–7357.

[12] X. Li, C. Wang, Y. Tang, C. Tran, Y. Tang, J. Pino, A. Baevski,
A. Conneau, and M. Auli, “Multilingual speech translation
with efficient finetuning of pretrained models,” arXiv preprint
arXiv:2010.12829, 2020.

[13] Y. Liu, H. Xiong, Z. He, J. Zhang, H. Wu, H. Wang, and C. Zong,
“End-to-end speech translation with knowledge distillation,” arXiv
preprint arXiv:1904.08075, 2019.

[14] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and
H. Ghasemzadeh, “Improved knowledge distillation via teacher
assistant,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 34, no. 04, 2020, pp. 5191–5198.

[15] M. A. Di Gangi, R. Cattoni, L. Bentivogli, M. Negri, and M. Turchi,
“Must-c: a multilingual speech translation corpus,” in the confer-
ence of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies. Association
for Computational Linguistics, 2019, pp. 2012–2017.

[16] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,”
Advances in Neural Information Processing Systems, vol. 33, pp.
12 449–12 460, 2020.

[17] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad,
M. Lewis, and L. Zettlemoyer, “Multilingual denoising pre-training
for neural machine translation,” Transactions of the Association
for Computational Linguistics, vol. 8, pp. 726–742, 2020.

[18] S. Shleifer and A. M. Rush, “Pre-trained summarization distilla-
tion,” arXiv preprint arXiv:2010.13002, 2020.

[19] Z. Li, Z. Wang, M. Tan, R. Nallapati, P. Bhatia, A. Arnold,
B. Xiang, and D. Roth, “Dq-bart: Efficient sequence-to-sequence
model via joint distillation and quantization,” arXiv preprint
arXiv:2203.11239, 2022.

[20] Y. Tang, J. Pino, X. Li, C. Wang, and D. Genzel, “Improving speech
translation by understanding and learning from the auxiliary text
translation task,” arXiv preprint arXiv:2107.05782, 2021.

[21] Z. Li, H. Zhao, Y. Wu, F. Xiao, and S. Jiang, “Controllable
dual skew divergence loss for neural machine translation,” arXiv
preprint arXiv:1908.08399, 2019.

[22] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “Fitnets: Hints for thin deep nets,” arXiv preprint
arXiv:1412.6550, 2014.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[24] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What
does bert look at? an analysis of bert’s attention,” arXiv preprint
arXiv:1906.04341, 2019.

[25] R. Cattoni, M. A. Di Gangi, L. Bentivogli, M. Negri, and M. Turchi,
“Must-c: A multilingual corpus for end-to-end speech translation,”
Computer Speech & Language, vol. 66, p. 101155, 2021.

[26] C. Wang, A. Wu, and J. Pino, “Covost 2 and massively multilin-
gual speech-to-text translation,” arXiv preprint arXiv:2007.10310,
2020.

[27] J. Iranzo-Sánchez, J. A. Silvestre-Cerda, J. Jorge, N. Roselló,
A. Giménez, A. Sanchis, J. Civera, and A. Juan, “Europarl-st:
A multilingual corpus for speech translation of parliamentary de-
bates,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2020, pp. 8229–8233.

[28] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer,
R. Morais, L. Saunders, F. M. Tyers, and G. Weber, “Common
voice: A massively-multilingual speech corpus,” arXiv preprint
arXiv:1912.06670, 2019.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[30] J. Kasai, N. Pappas, H. Peng, J. Cross, and N. A. Smith, “Deep en-
coder, shallow decoder: Reevaluating non-autoregressive machine
translation,” arXiv preprint arXiv:2006.10369, 2020.

	 Introduction
	 Model
	 Baseline model
	 Compressed model

	 Methodology
	 Training objective function
	 Knowledge distillation
	 Training scheme

	 Experiments
	 Datasets
	 Model Settings

	 Results
	 Importance of model structure & weight initialization
	 Importance of KD loss terms
	 Training scheme of compressed model

	 Conclusion
	 References

