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ABSTRACT

Recent work has shown that deep-learning based speech en-
hancement performs best when a time-frequency mask is es-
timated. Unlike speech, these masks have a small range of
values that better facilitate regression-based learning. The
question remains whether neural-network based speech es-
timation should be treated as a regression problem. In this
work, we propose to modify the speech estimation process,
by treating speech enhancement as a classification problem in
an ASR-style manner. More specifically, we propose a quan-
tized speech prediction model that classifies speech spectra
into a corresponding quantized class. We then train and ap-
ply a language-style model that learns the transition probabil-
ities of the quantized classes to ensure more realistic speech
spectra. We compare our approach against time-frequency
masking approaches, and the results show that our quantized
spectra approach leads to improvements.

Index Terms— speech enhancement, language model,
speech quantization, deep learning

1. INTRODUCTION

Monaural speech enhancement is a challenging problem that
aims to remove unwanted noise from a speech signal. The
increasing usage of electronic devices, such as smart speak-
ers, voice-controlled devices, and hearing aids increases the
need for improved speech enhancement. Advancements in
deep learning have led the field towards a solution, but, poor
performance and unwanted distortions in noisy conditions re-
quire further improvements.

Speech enhancement is divided into two forms, ei-
ther mask-based or signal-based approximation. A time-
frequency (T-F) mask is estimated in mask-based approaches
and it filters unwanted noise. Early mask-based approaches
estimate the ideal binary mask (IBM) [1] and ideal ratio
mask (IRM) [2]. More recent approaches estimate the phase-
sensitive mask (PSM) [3], complex ratio mask (cIRM) [4] or
parametric complex-valued T-F mask [5] to enhance magni-
tude and phase. On the other hand, signal approximation can
be done in either the time [6, 7] or the T-F domains [8].

Deep clustering, which forms a binary mask for multi-
speaker separation, has also been proposed [9]. This approach
clusters each T-F unit into one of many clusters, which corre-
sponds to a sound source. Hence, source classification is per-
formed. Early approaches have also performed classification-
based enhancement [10, 11]. In [12], separate discrete T-F
masks for magnitude and phase responses are estimated us-
ing softmax activations, where recurrent networks are used
to capture temporal correlations. The ideal quantized mask
(IQM) has also recently been proposed [13]. It shows that
quantization of the IRM, by coding each T-F IRM value into
one of a number of quantized bins, is a reasonable repre-
sentation of the IRM as assessed by human listeners. This
study, however, did not evaluate estimated versions of the
IQM. These studies essentially show that estimating quan-
tized or class values is beneficial. However, although recur-
rent networks capture temporal correlations, these approaches
do not ensure that the resulting speech spectra exhibit real-
istic spectral- and temporal-fine structure that occurs within
real speech signals from human sources. Our recent work
strives to enforce spectral-fine structure by incorporating an
intra-spectral recurrence layer [14, 15], but they do not ad-
dress temporal-fine structure and do not ensure that human-
like spectra is generated.

Automatic speech recognition (ASR) helps ensure that re-
alistic text transcriptions are generated by applying language
models on top of DNN-based acoustic models [16]. Moti-
vated by this, we propose a signal-approximation approach
that uses a recurrent network to estimate quantized T-F spec-
tra values, where we subsequently apply a spectral model to
generate more realistic (human-like) spectra across time and
frequency. In other words, our quantized spectra estimation
is analogous to acoustic modeling, and our spectral model is
akin to a language model. Here, quantization refers to treat-
ing T-F speech estimation as a classification problem, where
each T-F spectral value is assigned to one of many quantized
classes. We conduct a listening study to show that quantized
speech is not acoustically different from clean speech, accord-
ing to human listeners. We propose two quantized spectral
models (QSM) that learn the transition probabilities between
the quantized classes of speech across time and frequency.
Unlike prior approaches [3, 17], which either treat ASR as a



back-end component or that uses features from ASR-models
to improve ASR performance, our proposed approach uses
ASR-equivalent acoustic and language models for speech
enhancement. To the best of our knowledge, deep-learning
based quantized speech approximation with a T-F level quan-
tized spectral model has not been investigated for monaural
speech enhancement.

2. PROPOSED APPROACH

Let’s define clean speech as st and background noise as nt
at time t. The mixture of clean speech and noise is denoted
as, mt = st + nt. Using the short-time Fourier transform
(STFT), T-F domain signal St,k is computed from st at time t
and frequency k, where St,k = |St,k|eiθ

S
t,k . Enhancement of

the noisy speech magnitude |Mt,k| produces estimated clean
magnitude |Ŝt,k|. In this approach, we enhance the magni-
tude response, but use the noisy phase θMt,k to reproduce an
enhanced speech signal.

2.1. Speech Quantization

|St,k| ∈ {0,<+} is unbounded and continuous valued. Here,
a scaling function C[0,r](·) is used to constrain the values
within the range [0, r]. We constrain the amplitude of a signal
by setting r to 100. A quantization function Qχ(·) converts
the range constrained magnitude spectrogram into D number
of bins which are χ steps apart. This produces quantized
speech, i.e. |St,k|q = Qχ

(
C[0,r](|St,k|)

)
. Now, a speech

enhancement system can learn a function F qφ(·) that maps
between noisy speech |Mt,k| and quantized clean speech
|St,k|q , and this becomes a D class classification problem,

|Ŝt,k|q = F qφ

(
|Mt,k|

)
.

Choosing the quantization step χ is a crucial part of
speech quantization, as it has to be small enough so that hu-
man listeners do not notice the difference between quantized
and original speech. For determining the best χ, we conduct
a listening study whose details are in the subsection 3.1. An
example of the original clean and quantized clean magni-
tude spectra are shown in Fig. 1, where χ = 2 for display
purposes.

Fig. 1: Quantization of a clean magnitude spectrum.

2.2. Quantized Spectral Model

Traditionally, a language model (LM) is applied at the word
or phoneme level, where the effectiveness of the LM depends
on the text and its vocabulary. We propose an alternative view
of a LM, where we consider each quantization level as a word.
We consider bi-gram LM, which we refer to as the Quantized
Spectral Model (QSM). Though we construct the QSM using
quantized speech magnitudes from clean speech corpora, un-
like traditional LMs, the QSM is less likely to suffer from the
out of vocabulary problem when the model parameters, χ and
r, are adequately defined.

We consider both mean and per-frequency-channel QSMs,
computed along the time axis. For the mean QSM (mQSM),
each entry refers to the transition probability between two
time consecutive quantized levels, mQSM = P (dt+1,:|dt,:),
where the probabilities are computed across all frequency
channels. Similarly, the per-frequency QSM, fQSM, is de-
fined as fQSMk = P (dt+1,k|dt,k), where per-frequency
transitions are stored. The probabilities are calculated by
counting the level transitions, and then normalizing by the
appropriate scalar. The mean QSM results in a single D ×D
transition probability matrix, whereas the per-frequency-
channel QSM produces a F × D × D probability matrix.
F is the total number of frequency channels. To overcome
the zero-probability problem in N-grams, we reevaluate the
transition probabilities using Good-Turing smoothing [18].

2.3. Model architecture

We adopt a similar model structure as Chimera++ [19] for es-
timating the quantized speech value at each T-F point (Fig.
2). Multiple bi-direction LSTM (BLSTM) layers are applied
to learn a T-F embedding for the inputted speech. In the out-
put layer, we use a Y-shaped structure with two branches. The
rightmost branch predicts the quantized class probability for
the t-th time frame using a linear and softmax layer. This
branch of the network has two losses, a cross-entropy loss
to assess classification performance (Lcls), and a regression
loss, where the estimated expected quantized value is com-
puted at each T-F bin and compared to the true quantized
value, using the mean-square error. The regressed loss func-
tion is denoted as Lreg . The Lreg is should help with distin-
guishing between between nearby classes. This is later shown
in Table 1.

The left branch of our model performs deep clustering to
separate speech from noise, and it serves as a regularizing
term for this approach. The network computes E dimensional
unit-length embedding vector vt,k ∈ <(1×E) corresponding
to the t, k-th element in the input. Similarly, yt,k ∈ <(1×G)

is a one-hot label vector indicating which source in a mix-
ture dominates time-frequency bin (t, k). Since we have only
speech and noise as sources, G is 2. Now, stacking these
values, we form the embedding matrix V ∈ <(TF×E), and
the source label matrix Y ∈ <(TF×G). The embedding V is



Fig. 2: Proposed network for speech enhancement.

learned by minimizing the following objective function:

LDC = ‖V V T − Y Y T ‖2 (1)

= ‖V TV ‖2 − 2‖V TY ‖+ ‖Y TY ‖ (2)

The overall loss function of our network with hyper-parameters
λ1 and λ2 is defined as:

L = (1− λ1)LDC + λ1λ2Lcls + λ1(1− λ2)Lreg (3)

This network predicts the quantization sequence condi-
tioned on both the class probability and transition probability.
QSM is trained separately and remains frozen when networks
weights are updated during backpropagation. Then the en-
hanced speech sequence |S1:T,:|q is of the optimal quantized
class sequence which is calculated using:

|Ŝ1:T,:|q = argmax
d1,:,··· ,dT,:

T∏
i=1

P (Mi,:|di,:)P (di,:|di−1,:) (4)

Using a beam search algorithm, we can solve equation (4) and
find the best quantized class d for each |St,k|q .
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Fig. 3: Preference score for different quantization step from
listeners study. Reference audio is clean speech.

3. EXPERIMENTS AND RESULTS

3.1. Listening study to determine quantization stepsize

We conduct an IRB-approved listening study using Amazon
Mechanical Turk to determine the best quantization level as
assessed by normal-hearing listeners. The sound quality is
assessed at different quantization levels, where five values
for χ, e.g. 2, 1, 0.25, 0.0625, 0.015625 are separately com-
pared to the clean speech signal. Note that smaller χ results
in more quantization levels (D), which leads to better sound
quality. These quantization levels result in quantized speech
with equivalent signal to quantized-noise ratios (SQNR) of
14.21 dB, 17.78 dB, 26.5 dB, 36.25 dB, and 46.93 dB, re-
spectively. The study is conducted as follows, the participant
will listen to two audio signals, one is quantized and the other
is clean audio. Then they provide a preference score using
a Likert scale. The scale ranges from −3 to +3, where −3
refers to a strong preference towards the first signal, +3 refers
to a strong preference towards the second signal, and 0 refers
to no preference. Before providing a score, the participant
can listen to the signals as many as times they like, where the
scores are not limited to integer values. The two signals and
corresponding quantization levels are randomly selected, and
the participant listens to different audio clips in each ques-
tion. The audio clips are chosen from the TIMIT corpus [20]
spoken by both males and females in equal proportion.

The study session contains total 30 questions, which is
preceded by a practice session of 7 questions. Ten partici-
pants (9 male, 1 female) who are native English speakers over
the age of 18 participated, where a headset/headphone was re-
quired to be worn. On average, participants took 14 minutes
to complete the study, they were given $3 monetary incentive.

The results of the study are shown in Figure 3. For quanti-
zation levels 2, 1, and 0.25, negative scores indicate that these
produce noticeably poorer sound quality. However, for χ =
0.0625, the preference score is very close to 0, which means it
is quite competitive with clean speech. Previous studies show
that speech with SNRs≥20 dB achieve sufficiently good per-
ceptual quality [21] and intelligibility [22]. This is also the
case in our study when χ = 0.0625 (e.g.≈36.25 dB SQNR).
Therefore, we choose χ = 0.0625 for quantization, which
results in 1600 quantization classes.

3.2. Experimental setup and results

We train our model on the IEEE and TIMIT speech corpora.
The IEEE corpus consists of 720 utterances from a single
male speaker, and the TIMIT corpus has 6300 utterances from
multiple male and female speakers. Our proposed QSM is
trained on the clean speech of both these datasets.

Three non-overlapping sets of 50, 11, and 18.3 hrs are
developed for the training, cross-validation, and testing sets,
respectively. The training and validation data is generated at
-3, 0, and 3 dB signal-to-noise ratios (SNRs) using four noise



Table 1: Average scores for each approach. Best results are
shown in bold.

IEEE corpus TIMIT corpus
PESQ SI-SDR ESTOI PESQ SI-SDR ESTOI

Mixture 1.86 1.8 0.53 1.81 -2.57 0.5
Chi++IQM2 2.18 0.34 0.64 2.06 0.4 0.6
Chi++QM3 2.25 0.41 0.68 2.08 0.43 0.64
Chi++IQM4 2.32 0.63 0.71 2.14 0.52 0.68
Chi++IQM8 2.37 0.72 0.73 2.1 0.53 0.69

Chimera [9] 2.4 0.81 0.75 2.16 0.49 0.69
Chi++tPSA [19] 2.46 0.84 0.76 2.25 0.74 0.72

Chi++quant 2.44 0.82 0.75 2.2 0.63 0.67
Chi++mQSM,greedy 2.45 0.88 0.8 2.26 0.81 0.74
Chi++fQSM,greedy 2.46 0.93 0.82 2.27 0.84 0.74

Chi++mQSM,bS 2.48 0.97 0.83 2.3 0.89 0.75
Chi++fQSM,bS 2.48 1.04 0.83 2.34 0.95 0.78

types (speech-shaped noise, cafeteria, factory, and babble).
We test with two additional SNRs (-6 and 6 dB), which are
unseen by the recurrent model. All the signals are sampled at
16 kHz. The spectrogram is generated using a 640-point DFT
with a Hann window of 40ms and a 20ms frameshift.

Our baseline network has four BLSTM layers of 600 cells
with dropout layers between each of the BLSTM layers with
dropout rate of 0.3. For the embedding vector, we use E = 20.
QSM is used in batch-wise on the model output to train the
network with the loss function L. The softmax is used as the
activation function for the output layers that predict the quan-
tized class. A sigmoid is used for the embedding approxima-
tion and gate activation function, while tanh functions are
used for the cell and hidden states. Batch normalization is
performed between each layer. Adam optimization is used
with learning rate of 0.001. In the loss function, λ1 and λ2
are set to 0.5 and 0.975, respectively.

In our proposed approach, we use the same baseline
network and investigate with different QSM techniques.
We incorporate mQSM and fQSM which are denoted as
Chi++mQSM and Chi++fQSM respectively. Also, we exper-
iment with optimal quantization class sequence decoding
algorithms. We try a greedy approach which assumes that
quantized classes are pair-wise independent. The greedy
approach is faster in decoding the optimal sequence. Addi-
tionally, we use an N-beam search approach, which does a
beam search with the N best candidates.

We compare our method against the state-of-art mod-
els chimera [9] and chimera++ [19] which are mask-based
approaches. We refer to these approaches as Chimera and
Chi++tPSA. Chimera predicts a magnitude mask and enhances
only the magnitude of the mixture, however, Chi++tPSA esti-
mates a phase-sensitive mask. Previous studies [23, 24] com-
pare their models to Chimera models that enhance speech in
non-speech noisy conditions with multi-talker speech. We
compare against the Chimera networks that are trained for
the speech enhancement task. To further investigate the ef-
fectiveness of quantized masking approaches, we use the
Chimera++ model to estimate the IQM [13], where the mod-
els are Chi++IQM2, Chi++IQM3, Chi++IQM4, and Chi++IQM8

which predicts enhanced speech using IQM2, IQM3, IQM4,
and IQM8 respectively. Here X in IQMX refers to the num-
ber of attenuation levels in the mask (see [13]). Additionally,
we compare with a Chimera++ network that predicts quan-
tized speech Chi++quant (proposed without the QSM). All
the approaches are evaluated with three commonly-used ob-
jective metrics, namely, the PESQ, the scale-invariant SDR
(SI-SDR) [25], and the extended STOI (ESTOI) [26].

We compare the performance scores of all the models in
both seen ( -3, 0, 3 dB) and unseen (-6, 6 dB) SNR condi-
tions for IEEE and TIMIT data corpus. Table 1 shows the
average scores of all the models. Our proposed Chi++fQSM
outperforms all the other models with per-frequency QSM
information and Chi++mQSM closely follows. Comparing
with the best performing mask-based approach Chi++tPSA,
both Chi++fQSM,bs and Chi++mQSM,bS gives 0.2 PESQ gain
and 0.07 ESTOI gain using the IEEE corpus. For TIMIT,
Chi++fQSM,bs outperforms Chi++tPSA by 0.21 according to SI-
SDR. Additionally, Chi++quant exceeds the Chimera model
in all performance metrics; but still has lower scores than
QSM infused models which indicates the advantages of a
spectral model. It is worth noting that the proposed models
outperform Chi++tPSA, even though this approach enhances
the magnitude and phase responses of a noisy speech sig-
nal, whereas our approaches only enhance the magnitude
responses. It is likely that further gains will occur if our
approach additionally enhances phase. Additionally, perfor-
mance when estimating a quantized mask (e.g. IQM) tends
to be lower than the phase-based masking approaches and
proposed approaches. This occurs when the spectral model
is and is not used. This indicates that quantizing the spectra
leads to better performance than quantizing a mask. This
likely occurs because the mask values are already in a small
and constrained range.

For optimal quantized class decoding, we use both greedy
and N-beam search (bS) approaches. Beam searching shows
superiority likely because it covers a bigger search space of
(N × T ) class candidates (N = 100). With the beam search
algorithm, Chi++fQSM,bS gains 0.9 more SI-SDR points for
IEEE than its greedy version. Also with TIMIT, Chi++fQSM,bS
receives a 0.7 PESQ gain compared to Chi++fQSM,greedy.

4. CONCLUSION

Our proposed quantized speech classification approach with
an ASR-style language model successfully enhances the
speech mixture and outperforms T-F masking-based ap-
proaches. It shows that signal-approximation can be done
successfully if the appropriate training target is considered.
This approach, however, considers only bi-gram spectral
models which are generated by considering only along-time
transitions. In the future, we will explore higher-order N-
gram models that consider both temporal and spectral transi-
tions to enhance both magnitude and phase responses.
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