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Abstract
Objective measures of success, such as the perceptual evalua-
tion of speech quality (PESQ), signal-to-distortion ratio (SDR),
and short-time objective intelligibility (STOI), have recently
been used to optimize deep-learning based speech enhance-
ment algorithms, in an effort to incorporate perceptual con-
straints into the learning process. Optimizing with these mea-
sures, however, may be sub-optimal, since the objective scores
do not always strongly correlate with a listener’s evaluation.
This motivates the need for approaches that either are opti-
mized with scores that are strongly correlated with human as-
sessments or that use alternative strategies for incorporating per-
ceptual constraints. In this work, we propose an attention-based
approach that uses learned speech embedding vectors from a
mean-opinion score (MOS) prediction model and a speech en-
hancement module to jointly enhance noisy speech. Our loss
function is jointly optimized with signal approximation and
MOS prediction loss terms. We train the model using real-world
noisy speech data that has been captured in everyday environ-
ments. The results show that our proposed model significantly
outperforms other approaches that are optimized with objective
measures.
Index Terms: speech enhancement, speech assessment, atten-
tion model, deep learning, MOS, speech quality

1. Introduction
Single-channel speech enhancement is a challenging task, but
deep-learning based models have shown to be effective in re-
moving unwanted noise and reverberation in certain environ-
ments. Deep-learning based speech enhancement approaches
traditionally use the mean square error (MSE) between the es-
timated speech and clean speech signal during training, to op-
timize performance. This is done due to the computational ef-
ficiency of the MSE loss function. However, since MSE is not
always a strong indicator of performance, many studies have
recently begun to optimize algorithms using other perceptually-
inspired objective measures.

Multiple studies use the short-time objective intelligibil-
ity (STOI) [1] score to optimize the algorithm and to improve
speech intelligibility [2, 3, 4]. Directly optimizing the STOI
score is proposed in [3] to minimize the inconsistency between
the model optimization criterion and the evaluation criterion for
the enhanced speech. The experimental results show that jointly
optimizing with STOI and MSE improves speech intelligibility
according to objective and subjective measures of success from
a listening study. In addition, the word recognition accuracy of
the enhanced speech, as assessed by automatic speech recogni-
tion (ASR), is improved. Perceptual evaluation of speech qual-
ity (PESQ) [5] scores, another popular objective metric, how-
ever, have not been increased by optimizing with STOI as re-
ported in [3]. The signal-to-distortion ratio (SDR) [6] has also

been used as an objective cost function for optimizing perfor-
mance [7]. Their results show that optimizing with SDR leads
to overall objective quality improvements. Unlike SDR and
STOI, PESQ cannot directly be used as an objective function
since it is non-differential. Reinforcement learning (RL) tech-
niques such as deep Q-network and policy gradient have thus
been employed to solve the non-differentiable problem [4, 8].
In these works, PESQ and the perceptual evaluation methods
for audio source separation (PEASS) [9, 10] serve as rewards
that are used to optimize model parameters. Meanwhile, a new
PESQ-inspired objective function that considers symmetrical
and asymmetrical disturbances of speech signals has been de-
veloped in [11]. Quality-Net [12], which is a deep neural net-
work (DNN) approach that estimates PESQ scores given a noisy
utterance, has also been used as a maximization criteria [13] and
as a model selection parameter [14] to enhance speech. Though
these papers show that perceptually-inspired speech-quality ob-
jective functions can improve performance in certain settings,
optimizing with objective measures of success is not always op-
timal since they do not always strongly correlate with subjective
measures [9, 15]. Hence, alternative strategies for incorporating
perceptual feedback may be needed.

Subjective evaluation of speech from human listeners re-
mains the gold-standard evaluation approach, since it results
in ratings from potential end users. Subjective speech qual-
ity evaluations often ask human listeners to either give rela-
tive preference scores [16] or assign a numerical rating on the
quality of the speech stimuli [17]. Multiple ratings are pro-
vided by listeners for each signal, where they are averaged to
generate a mean-opinion score (MOS). Recently, various deep-
learning approaches have effectively estimated human-assessed
MOS [18, 19, 20, 21]. These approaches are promising since
they can provide strongly-correlated quality scores for new sig-
nals.

Joint learning has been successfully applied in speech en-
hancement to optimize between estimating speech and other
training targets, such as the phase response [22], phoneme
class [23], speaker identification [24], and speech recogni-
tion [25]. In a similar manner, we propose to leverage the ben-
efits of speech-quality estimation for the speech enhancement
task using joint learning. In particular, we propose an attention-
based speech enhancement model that uses the embedding vec-
tor from a MOS prediction model to produce speech with bet-
ter perceptual quality. The MOS estimator generates encoded
embedding vectors from the input noisy speech. Our speech
enhancement attention model is conditioned on that embedding
vector and enhances the noisy speech using a separate encoder-
decoder framework. The embedding vector extracts perceptu-
ally useful features that are important for human-based assess-
ment. The speech enhancement model will leverage these fea-
tures, which should help produce better quality speech accord-
ing to human evaluation. Our proposed model jointly updates



both the MOS-prediction and speech-enhancement models dur-
ing training, using speech enhancement and MOS prediction
loss terms.

The rest of the paper is organized as follows. In section 2,
we introduce the speech quality assessment model and the pro-
posed speech enhancement model. We describe our dataset, ex-
perimental setup and evaluate our proposed joint learning ap-
proach in section 3. We conclude our work in section 4.

2. Proposed Approach
Let’s define st as the clean speech signal and nt as the noise
at time t. The mixture of clean speech and noise is denoted as
mt = st + nt. We aim to extract the speech from the mixture
by removing the unwanted noise. The short-time Fourier trans-
form (STFT) is first used to convert the time-domain mixture
signal into a time-frequency (T-F) domain signal, Mt,f , that is
defined at time t and frequency f . The complex-valued STFT
matrix, M , can be written as M = |M |eiθ

M

with magnitude
|M | ∈ <T×F

+ and phase θM ∈ <T×F . The enhancement
of the noisy speech magnitude directly produces an estimated
clean magnitude response |Ŝ|, using an enhancement function
F such that |Ŝ| = F(|M |). The enhancement function is mod-
eled with a deep neural network. This estimated magnitude re-
sponse is then combined with the noisy phase, θM , where the
inverse STFT can subsequently be used to produce an enhanced
speech signal in the time domain, ŝt.

A depiction of our speech-enhancement model is shown
in Figure 1. The model consists of a MOS prediction model
(shown left - red box) and a speech enhancement model (shown
right - blue box). We next will describe each of these sub-
modules.

2.1. Speech quality assessment model

We adapt the data-driven MOS prediction model from [26]
to estimate MOS from the noisy speech signals. This model
has been developed with real-world data and it has been
shown to outperform comparison approaches [12, 18, 27],
according to multiple metrics. The MOS prediction model
consists of an attention-based encoder-decoder structure that
uses stacked pyramid bi-directional long-short term memory
(pBLSTM) [28] networks in the encoder. We denote this MOS
prediction model as Pyramid-MOS (PMOS). A pBLSTM archi-
tecture gives the advantages of processing sequences at multi-
ple time resolutions, which effectively captures short- and long-
term dependencies. Speech has spectral and temporal depen-
dencies over short and long durations, and a multi-resolution
framework is effective in learning these complex relations.

The input to the network is a one-time frame of a noisy-
speech mixture |Mt|. In a pyramid structure, the lower layer
outputs from Υ consecutive time frames are concatenated and
used as inputs to the next pBLSTM layer, along with the recur-
rent hidden states from the previous time step. The output of
a pBLSTM node is an embedding vector, hlt, that is as defined
below:

hlt = pBLSTM
(
hlt−1,

[
hl−1

Υ×t−Υ+1, h
l−1
Υ×t

])
(1)

where Υ is the reduction factor between successive pBLSTM
layers and l is the layer number. A pyramid-BLSTM struc-
ture reduces the time resolution from the input speech to the
final latent representationH . This compressed vector accumu-
lates the useful features for measuring speech perceptual quality
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Figure 1: A depiction of our speech-enhancement model that
consists of a MOS-prediction model denoted as PMOS ( left side
-red box), and a speech-enhancement (SE) model (right side -
blue box). An attention mechanism connects the two models.

that resides in a range of time-frames and ignores the least im-
portant features. The encoder output is generated by concate-
nating the hidden states of the last pBLSTM layer into vector
H = {h1,h2, · · · ,hτ , · · · ,h℘}, where ℘ is the total number
of final embedding vectors with index τ .

The decoder of the PMOS model is implemented as an at-
tention layer followed by a fully-connected (FC) layer and it
outputs an estimated MOS of the input speech. Attention mod-
els learn key attributes of a latent sequence, since adjacent time
frames can provide important information, which is particularly
necessary for our task. The self-attention mechanism [29] uses
the pyramid encoder output at the i-th and k-th time steps to
compute the attention weights, αPMOS

i,k . Attention weights are
used to compute context vector cPMOS

i using the below equa-
tions:

αPMOS
i,k =

exp (h>i Qhk)∑℘
i=1 exp (h>i Qhk)

(2)

cPMOS
i =

℘∑
k=1

αPMOS
i,k · hk (3)

HereQ is the PMOS attention weight matrix. The context vec-
tor is provided to a fully-connected (FC) layer to estimate the
MOS of the noisy speech signal. Note that the pyramid struc-
ture of the encoder results in a shorter sequence of latent repre-
sentations than the original input sequence, and it leads to fewer
encoding states for attention calculation at the decoding stage.
Therefore, strictly ℘ < T , and in our case ℘ = dT/ΥLe, where
L is the number of pBLSTM layers.

2.2. Attention-based speech enhancement

Our proposed speech-enhancement (SE) model also follows an
encoder-decoder structure, and it is shown in Figure 1 at the
right (blue box). The SE encoder takes a single time-frame of
a noisy-speech mixture, |Mt|, as input and multiple BLSTM
layers, are stacked together to create a hidden representation of
the frame, gt. An attention mechanism [30] is applied using the
mixture encoding from the SE model, G = {g1, g2, · · · , gT },
and the PMOS encoding, H , from the MOS prediction model.
This allows the SE model to exploit the MOS estimator’s en-
coding and utilize the important perceptual feature embedding
that correlates with human assessment. Since PMOS yields en-
coding vector H , which has a smaller time resolution than the
encoding from the SE encoder, we compute a score for each em-
bedding vector hLτ using a learnable weight matrix, W . Then



the attention weights for the SE model, αt,τ , are obtained using
a softmax operation over the scores of all hLτ . Now, the PMOS
encoding is summarized in a context vector ct for each mixture
frame gt. Prior to computing ct, hLτ passes through a linear
layer `, so that we learn a different representation for the SE
task. The computations are below:

scoret,τ = g>t Whτ (4)

αt,τ =
exp (scoret,τ )∑T
t=1 exp (scoret,τ )

(5)

ct =

℘∑
τ=1

αt,ε · `(hτ ) (6)

Since we are learning two targets MOS and enhanced speech
simultaneously, the unified model will learn different represen-
tations for these tasks. Thus both PMOS and SE models will
learn their corresponding targets with perceptual feature shar-
ing. Then, the context vector and SE-model embedding vec-
tor are concatenated (e.g., [ct, gt]) and passed to the decoder
module. The SE-decoder module follows the network structure
from [23]. It consists of a linear layer with a tanh(·) activa-
tion function, two BLSTM layers, and a linear layer with ReLU
activation. It outputs the estimated enhanced speech |Ŝ|.

2.3. Joint-learning objective function

Our joint-learning objective function uses a weighted average
of a signal-approximation loss Lsa (from the SE model), the
MSE of the magnitude spectrum Lmse (from the SE model)
and the MSE of the MOS estimation Lmos (from the PMOS
model). We compute the signal-approximation loss from the
time-domain signal difference between the reference speech s
and enhanced speech ŝ. The overall loss function of our net-
work is defined as below, using hyper-parameters λ1 and λ2

that control the impact of individual loss terms:

L = λ1 [λ2Lmse + (1− λ2)Lsa] + (1− λ1)Lmos (7)

We first train the PMOS model using Lmos (e.g. λ1 = 0),
then we train the SE model using λ1 = 1, while running the
PMOS model in inference mode (e.g. it is held fixed). This is
done to ensure that the trained PMOS model effectively encodes
the key features in the embedding vector that are important to
perceptual speech quality. Finally, we train both the models
jointly using L to further reduce any correctional differences
between the true MOS and estimated MOS in the PMOS model,
and to increase the perceptual quality of the enhanced speech.

3. Experiments and Results
3.1. Dataset

For training and testing, we use the COnversational Speech
In Noisy Environments (COSINE) [31] and Voices Obscured
in Complex Environmental Settings (VOiCES) [32] corpora.
The COSINE corpus contains 150 hours of audio recordings
that are captured using 7-channel wearable microphones, with
multiparty conversations in a variety of noisy environments
(e.g., street, cafeteria, bus, wind noise, etc). Audio captured
by the close-talking microphone is used as the clean refer-
ence, whereas audio from the shoulder and chest microphones
are considered noisy signals with significant amounts of back-
ground noise. The VOiCES corpus records audio using 12
microphones placed throughout two rooms of different sizes.

Table 1: Performance comparison with MOS prediction models.
Best results are shown in bold.

MAE RMSE PCC (γ) SRCC (ρ)
NISQA [27] 0.62 0.7 0.71 0.79
PMOS [26] 0.51 0.57 0.88 0.88
SE+PMOS 0.45 0.52 0.9 0.91

Different background noises are played separately in conjunc-
tion with foreground clean speech, so the signals contain noise
and reverberation. Foreground speech is used as the refer-
ence clean signal, and the audio from two microphones is used
as the reverberant-noisy speech. The approximated speech-to-
reverberation ratios (SRRs) of the VOiCES signals range from
-4.9 to 4.3 dB. In COSINE, the approximated signal-to-noise
ratios (SNRs) range from -10.1 to 11.4 dB. The MOS data was
captured from the listening study that is outlined in [26], which
contains MOS quality ratings for 18,000 COSINE signals and
18,000 VOiCES signals. In total, 45 hours of speech signals are
generated and 180k subjective human judgments are collected.

Both speech corpora consist of 16-bit single-channel files
sampled at 16 kHz. For MOS prediction, the input speech sig-
nals are segmented into 40 ms length frames, with 10 ms over-
lap. A FFT length of 512 samples and a Hanning window are
used to compute the spectrogram. Mean and variance normal-
ization are applied to the input feature vector. Noisy or rever-
berant stimuli of each dataset are divided into training (70%),
validation (10%), and testing (20%) sets, and trained separately.

3.2. Network architecture

The PMOS encoder uses L = 3 pBLSTM layers (with 128,
64 and 32 nodes in each direction, respectively) on top of a
BLSTM layer that has 256 nodes. As in [26, 28], the reduction
factor Υ = 2 is adopted here. Therefore, the final latent rep-
resentation hτ is reduced in the time resolution by a factor of
Υ3 = 8. In the PMOS decoder, the context vector is passed to
a FC layer with 32 units. The model is optimized using Adam
optimization with convergence determined by a validation set.

Our proposed SE model uses a LSTM based encoder-
decoder architecture, where the encoder consists of 2 BLSTM
layers. The decoder has a linear layer with tanh activation,
followed by a 2-layer BLSTM and a linear layer with ReLU ac-
tivation [23, 34]. Each LSTM layer contains 200 nodes and the
linear layer has 321 nodes. The input feature vector is the mag-
nitude of the mixture spectrogram computed using a hamming
window with 50% overlap after normalization. Adam optimiza-
tion [35] is applied and the learning rate is 0.0001. An early
stopping method is used if the performance on the validation
does not decrease in 200 consecutive epochs.

3.3. Results

We use four metrics to evaluate MOS-estimation performance;
mean absolute error (MAE), epsilon insensitive root mean
squared error (RMSE) [36], Pearson’s correlation coefficient γ
(PCC), and Spearman’s rank correlation coefficient ρ (SRCC).
We evaluate our proposed model in two stages. In the first stage,
we train our MOS estimation model (PMOS) [26]. Then we
freeze the PMOS model and train the speech enhancement (SE)
model using learned PMOS embeddings. Finally, we perform
joint learning of the PMOS and SE models, and this is denoted
as SE+PMOS. In Table 1, we compare MOS prediction perfor-
mance with NISQA [27], which is modified to estimate MOS
using a convolutional neural network (CNN) and BLSTM ar-



Table 2: Average results of the speech enhancement models in different performance metrics. Best results are shown in bold.

COSINE VOiCES
loss func. PESQ SI-SDR ESTOI MOS-LQO PESQ SI-SDR ESTOI MOS-LQO

Mixture - 1.46 0.53 0.62 4.04 1.26 -1.3 0.48 2.74
SE Lmse 2.68 2.8 0.8 3.2 2.3 1.2 0.69 3.5

Lmos [13] 2.8 3.8 0.82 4.2 2.37 1.66 0.74 5.3
Lmse,Lsa 2.72 3.1 0.82 4 2.35 1.6 0.7 3.8
Lsa,Lmos 2.89 4.1 0.85 4.4 2.42 1.72 0.77 5.7
Lsdr [7] 2.7 4.5 0.82 4 2.32 2.01 0.72 4.5

SE+PMOS Lmse 3.1 4 0.85 4.2 2.48 1.8 0.8 6
Lmse,Lsa 3.19 4.6 0.93 4.8 2.54 2.08 0.86 6.3
Lmse,Lsa,Lmos 3.19 4.5 0.92 5.1 2.53 2.06 0.84 6.5

MetricGAN [33] Lpesq 3.28 4.4 0.9 5 2.67 2.01 0.83 6.1
Lstoi 3.19 4.3 0.94 4.8 2.5 2 0.87 5.8

SSEMS [14] Lqnet(φ = 0dB) 2.85 2.9 0.83 3 2.4 1.8 0.7 2.8

chitecture. Results show that the proposed SE+PMOS clearly
outperforms other MOS prediction models according to all met-
rics. The absolute correlation error minimizes by 0.6 compared
to the original PMOS [26] approach. This justifies the use of our
PMOS model, but also points to the benefits of joint learning.

In terms of speech enhancement, we compare against a
speech enhancement model without attention mechanism [37]
and denote this baseline model as SE. Different loss functions
are used to optimize this model, including MSE, MSE plus
signal approximation, MOS, signal approximation with MOS,
and SDR. We compare our proposed approach against a gen-
erative adversarial network (GAN) that individually optimizes
with PESQ (Lpesq) and STOI (Lstoi) [33]. We denote this
model as MetricGAN. We compare against an ensemble-based
specialized speech enhancement model selection (SSEMS) [14]
approach that uses Quality-Net [12], which estimates PESQ
scores, as their objective function. They form an ensemble
structure with several enhancement models, where each model
is trained using audio at specific SNRs. During inference, they
choose the output that has the highest objective PESQ score.
We choose the SNR threshold φ = 0dB for balance training.
All models are trained using the experimental setup that is pre-
viously mentioned. We modify the comparison models using
the code provided by the original authors. Speech enhance-
ment performance is assessed with PESQ [5], scale-invariant
SDR (SI-SDR) [6, 38], and extended STOI (ESTOI) [1, 39].
Additionally, we measure the predicted MOS score of the en-
hanced speech, using our PMOS model, since we aim to im-
prove human-assessed speech quality. We denote this metric as
MOS-LQO.

Table 2 shows the average results of the different enhance-
ment models, according to each of the performance metrics.
As the scores of the unprocessed mixture show, the reverber-
ant VOiCES corpus is much more challenging than the noisy
COSINE corpus. For the baseline SE model, we experiment
with 5 different combinations of loss functions. With the MSE
loss,Lmse, we see improvements in objective scores, except
MOS-LQO for the COSINE data. With Lmos as the only ob-
jective criteria as proposed in [13], MOS-LQO improves by 1.4
overall compared with SE with Lmse. Then we separately com-
bine the signal approximation loss with MSE loss and MOS
loss. In terms of PESQ, we gain on average approximately 0.35
and 0.5 compared to the models that use only the MSE loss and
MOS loss, respectively. This suggests that Lmse and Lsa maxi-
mize the overall objective intelligibility, whereas Lmos focuses
more on perceptual speech quality. Note that in all these Lmos
calculation, we use a separately trained PMOS model (e.g., no

Figure 2: Average SI-SDR performance of speech enhancement
models on test speech in different SNRs.

joint learning). Lastly, we apply the SDR loss function as pro-
posed in [7]. We observe an average gain of 0.35 in SI-SDR,
however, it yields a poor score according to other metrics, espe-
cially a 0.8 loss in MOS compared to SE with Lmse,Lsa loss
terms. We calculate the performance of our proposed model us-
ing three combinations of loss functions. Using Lmse and Lsa,
we achieve the highest SI-SDR scores for both corpora, though
these results are nearly identical to the model trained with all
three loss terms (e.g., L (eq:7)). Using all three loss terms, the
MOS-LQO score is 5.1 and 6.5 for noisy and reverberant en-
vironments, respectively, which are the highest results for this
metric. MetricGAN optimizes PESQ or STOI, hence, it outper-
forms other models in terms of PESQ and ESTOI separately,
though the scores for our two- and three-term SE+PMOS ap-
proaches are only slightly lower even though PESQ and STOI
are not considered during training. The SSEMS approach yields
the lowest scores across all metrics. It is important to note
that the proposed approach performs best according to SI-SDR,
where this metric is not used by any of the approaches during
optimization.

Figure 2 shows the SI-SDR performance of the different
models as a function of SNR. Our SE+PMOS approach outper-
forms all the other models at each SNR.

4. Conclusion
Our proposed speech enhancement model utilizes a speech
quality MOS assessment metric in a joint learning manner
and the results show that it outperforms other models in both
noisy and reverberant environments. It shows that perceptually-
relevant embeddings are useful for speech enhancement. How-
ever, we evaluate our model’s subjective score using a MOS-
estimation model. Additionally, our assessment model provides
utterance-level feedback, which may be sub-optimal since the
model’s embeddings are calculated at the frame level. These
will be addressed in future work.
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